next up previous contents
Next: Variation of the blaze Up: ECHELLE SPECTROGRAPH BASICS Previous: Blaze Function and the


Blaze Peak Efficiency

The total intensity in a diffracted beam at the blaze wavelength is given by the sum of integrated intensity of all possible orders within $ \theta_B - 90^{\circ} < \beta < 90^{\circ}$.

$\displaystyle I_t = N^2 I(0) \Delta \beta_0 \left\{ 1 + \sum\limits_{\delta \ne...
...\frac{I(\delta)^{\prime}}{I(0)} \frac{\Delta \beta_m}{\Delta \beta_0} \right\}.$ (35)

where $ I(0)$ is the peak intensity at the blaze direction $ \beta_0$. The blaze peak efficiency is defined as follows by Schroeder (1981),

$\displaystyle E$ $\displaystyle =$ $\displaystyle \frac{N^2 I(0) \Delta \beta_0}{I_t}$ (36)
  $\displaystyle =$ $\displaystyle \left\{ 1 + \sum\limits_{\delta \neq 0}^{\alpha > \beta_m} I(\del...
...right)}^2 {I(\delta)}^{\prime} \frac{\cos \beta_0}{\cos \beta_m} \right\}^{-1},$ (37)

where I(0) = 1.



Subsections

Tae-Soo Pyo
2003-05-29