Galaxy Formation and Evolution: What is Simple and What Remains Mysterious

S. M. Faber

Subaru 20th Anniversary Celebration

Nov. 23, 2019

"Reverse Engineering" Galaxy Evolution

S. M. Faber

Subaru 20th Anniversary Celebration

Nov. 23, 2019

Subaru Telescope 20th Anniversary

GALAXY FORMATION

NAUPAKA IV

KAIA • HÖ • KÜ: TOWARDS UNDERSTANDING THE ORIGIN OF THE COMPLEXITY AND DIVERSITY

SOC: Chair - Masayuki Tanaka (NAOJ), Kate Whitaker (UConn), Mariska Kriek (UC Berkeley), Masato Onodera (Subaru), Pascal Oesch (Yale U.), Yuichi Matsuda (NAOJ)

NOV 19 (TUE) - NAUPAKA IV

09:00 (I) Ivo Labbe (Swinburne U. of Technology)

The first billion years of galaxy formation

09:25 Daichi Kashino (ETH Zurich)

Exploring the end tail of cosmic reionization with Subaru/HSC

09:40 Satoshi Yamanaka (Waseda U.)

CHORUS: Candidates of Lyman continuum galaxies at z=3.3...

09:55 Shotaro Kikuchihara (U. of Tokyo)

Early Low-Mass Galaxies and Star-Cluster Candidates at z~6-9

NOV 21 (THU) - NAUPAKA IV

09:00 (I) Gwen Rudie (Carnegie Obs.)

The Circumgalactic Medium of Star-Forming Galaxies at...

09:25 Yuma Sugahara (U. of Tokyo)

Fast Outflows Identified in Early Star-Forming Galaxies at... 09:40 (I) Annalisa Pillepich (MPIA)

Universe(s) in a box: insights from the TNG simulations and...

10:20 (I) Camilla Pacifici (STScI)

Sandage: Composite Star Cluster HR diagrams

Sandage: Composite Star Cluster HR diagrams

Phenomena to be explained

- Why do galaxies exist?
- Scaling relations
- Star-formation histories
- Characteristic upper stellar mass: 10¹0-1¹ M_☉
- Quenching

Not discussed for lack of time or personal knowledge:

- Morphology: disks, spheroids, bars, Hubble sequence
- Dwarf galaxies below 10⁹ M_☉
- Environment effects; effects of mergers
- Early galaxies before z = 3

Why Galaxies Exist

Dark matter halos are the scaffolding for galaxies Milky Way dark halo model

Dark matter halos have their own scaling laws

We can match the scaling laws for visible galaxies by painting galaxies into halos in the right way

Link R_{eff of} SF galaxies to the virial radii R_{vir} of their dark halos:

Assume: $R_{eff} = 0.02 R_{vir}$ on average.

Stellar Mass (M_o)

Somerville+18

Link R_{eff of} SF galaxies to the virial radii R_{vir} of their dark halos:

Assume: $R_{eff} = 0.02 R_{vir}$ on average.

Van der Wel+14, Huang+17, Somerville+18

Stellar Mass (M_{\odot})

Changing halo concentration changes R_{eff} = 0.02 R_{vir} x (C/10)^{-0.7}

SF galaxies evolve in R_{eff} – M_{*} along parallel tracks until they cross a "quenching boundary"

CANDELS+3D/HST photometry and redshifts

Stellar Mass (M_{\odot})

Van der Wel+ 2014

Exponential disks map $R_{eff} - M_*$ into $\Sigma_1 - M_*$

Star-formation histories of dark matter halos

A star-forming main-sequence compilation

Dark halos have their own mass-accretion "main sequence"

You can get the star-forming main sequence....

....by assuming the right mass-loading factor, η

Needed: a physical theory of stellar winds, which we do not have

An empirical expression for η based on the "bath-tub model"

Rodriguez-Puebla et al., 2017

Knowing η tells you the star-formation history

$$\dot{M}_{\rm in} = (1+\eta)\dot{M}_*$$

Knowing η tells you the star-formation history

$$\dot{M}_{\rm in} = (1+\eta)\dot{M}_*$$

A different interpretation of the Schmidt-Kennicutt law

A different interpretation of the Schmidt-Kennicutt law

- Cosmic infall minus wind losses determines the star-formation rate.
- The gas density in the galaxy responds according to the law in order to make stars at the required rate.
- The causality arrow in the SK law should be read backwards from normal.

Major unknowns are the origin of ΔSFR residuals and the power spectrum of ΔSFR variations

Long-term trends and their effect on galaxy structure are largely unexplored

Assembly histories of dark matter halos with 5 x 10¹¹ M_o today

Assembly histories of dark matter halos with 5 x 10¹¹ M_o today

Unlike human infants, whose DNA is permanent, it is unclear how well the young galaxy foreshadows the mature galaxy. Is time of formation a 2nd parameter?

A mean progenitor history of the Milky Way from abundance matching

There are two quenching channels: high-mass and low-mass

Low-mass channel appears $z \sim 1$; environmentally caused (Guo et al. 2017) High-mass channel is early; often identified with "halo quenching"

Muzzin et al. 2013; also Ilbert et al. 2010, 2013, Huang et al. 2013

Cooling predicts a dividing line between galaxies and clusters at halo mass $M_{crit} \sim 10^{12} M_{\odot}$

Blumenthal et al. 1984; also Rees and Ostriker 1977, Silk 1977

Cooling predicts a dividing line between galaxies and clusters at halo mass $M_{crit} \sim 10^{12} M_{\odot}$

Blumenthal et al. 1984; also Rees and Ostriker 1977, Silk 1977

Cooling predicts a dividing line between galaxies and clusters at halo mass $M_{crit} \sim 10^{12} M_{\odot}$

Blumenthal et al. 1984; also Rees and Ostriker 1977, Silk 1977

The stellar-mass/halo-mass relation from SHAM

The stellar-mass/halo-mass relation from SHAM

R_{eff} vs. M_{*}: Quenched galaxies

R_{eff} vs. M_{*}: Star-forming galaxies

Σ₁ vs. M_{*}: Quenched galaxies

Σ₁ vs. M_{*}: Star-forming galaxies

Σ₁ vs. M_{*}: Quenched galaxies

Σ₁ vs. M_{*}: Star-forming galaxies

A single 4-D space: Σ₁, R_e, M_{BH}, M_{*}

Star-forming galaxies evolve along power-law tracks until they encounter a boundary, where they enter the green valley.

R_e vs. M_{*}

 Σ_1 vs. M_*

M_{BH} vs. M_{*}

Chen et al. 2019

A single 4-D space: Σ₁, R_e, M_{BH}, M_{*}

Star-forming galaxies evolve along power-law tracks until they encounter a boundary, where they **enter the green valley**.

R_e vs. M_{*}

 Σ_1 vs. M_*

M_{BH} vs. M_{*}

Chen et al. 2019

$\Delta \log M_{BH}$ vs. $\Delta \log SSFR$ through the green valley

At least 90% of BH growth takes place in the GV

BH growth in star-forming galaxies and in the green valley

Comparison of assumed scaling laws to data

Comparison of assumed scaling laws to data

Pseudobulges have small BHs b/c they have not yet crossed the green valley

Pseudobulges have small BHs b/c they have not yet crossed the green valley

Lines of constant Σ_1 are lines of constant M_{BH}

Read Σ_1 and M_{BH} directly from R_{eff} and M^*

Larger galaxies at same M_{*} have <u>smaller</u> BHs

BH mass differences are substantial

Larger-radii galaxies must have higher M* to quench

This causes the <u>range</u> (1 dex) in M* of quenching galaxies

Green valley entry: $E_{BH} = 4x$ halo gas binding energy

The **red lines** are the observed quenching boundaries. When galaxies cross, they enter the GV.

Green valley entry: $E_{BH} = 4x$ halo gas binding energy

The blue lines are the new halo-gas model.

$$0.01 \times M_{BH}c^2 \cong 4 \times E_{bind} = 4 \times \frac{1}{2} M_{gas} V_{vir}^2$$

Assembly histories of dark matter halos with 5 x 10¹¹ M_☉ today

Assembly histories of dark matter halos with 5 x 10¹¹ M_☉ today

Phenomena to be explained

Major progress:

- ✓ Why do galaxies exist?
- ✓ Scaling relations for star-forming gal
- ✓ Time-smoothed star-formation histories
- ✓ Maximum stellar mass: 10¹0-¹¹ M_☉
- ✓ Quenching trigger
- ✓ Scaling relations for quenched gal

- Inflation + DM
- Imprinted by halos
- Imprinted by halos
- Quenching boundary
- BH-halo contest
- BH-halo contest

Phenomena to be explained

Major progress:

✓ Why do galaxies exist? Inflation + DM

✓ Scaling relations for star-forming gal Imprinted by halos

✓ Time-smoothed star-formation histories Imprinted by halos

✓ Maximum stellar mass: 10¹¹¹¹¹ M_☉ Quenching boundary

✓ Quenching trigger
BH-halo contest

✓ Scaling relations for quenched gal

BH-halo contest

Outstanding questions:

- ? Stellar winds; metallicities of gas and stars
- ? Physics of the Schmidt-Kennicutt law
- ? SF rate variations; power spectrum; main-sequence scatter
- ? BH growth physics: while star-forming; in green valley
- ? Halo gas evolution and how BHs interact with it
- ? Galaxies at z > 3, dwarfs, morphologies, environment, mergers
- ? Dust and its effects

Phenomena to be explained

Major progress:

- ✓ Why do galaxies exist?
- ✓ Scaling relations for star-forming gal
- ✓ Time-smoothed star-formation histories
- ✓ Maximum stellar mass: 10¹0-1¹ M_☉
- ✓ Quenching trigger
- ✓ Scaling relations for quenched gal

Inflation + DM

Imprinted by halos

Imprinted by halos

Quenching boundary

BH-halo contest

BH-halo contest

Outstanding questions:

Subaru specialties

- ? Stellar winds; metallicities of gas and stars
- ? Physics of the Schmidt-Kennicutt law
- ? SF rate variations; power spectrum; main-sequence scatter
- ? BH growth physics: while star-forming; in green valley
- ? Halo gas evolution and how BHs interact with it
- ? Galaxies at z > 3, dwarfs, morphologies, environment, mergers
- ? Dust and its effects