Gas filaments connecting galaxies and supermassive black holes in a proto-cluster

Hideki Umehata
(RIKEN Cluster for Pioneering Research / UT)

Overarching motivation

How do galaxies and SMBHs grow within cosmic structure?
How do they obtain their fuels?

- => We need to trace galaxies, AGNs, and IGMs/CGMs.
- => Proto-clusters would be a nice target.

Lyα emission from cosmic structure

Kollmeier et al. 2010, ApJ, 708, 1048

Ly α emission can be a tracer of cosmic web.

Some origins are expected: fluorescence, cooling radiation, scattering...

Lyα blobs in a proto-cluster

Possible connection between Ly α emission and underlying structure.

Panoramic Lyα survey in SSA22

Matsuda et al. 2011, MN, 410, 13 (a) SSA22-Sb1-7 M04 Matsuda et al. 2005, ApJ, 634, 125 **20 Mpc**

The LAE distribution delineates a z=3 cosmic structure on a large scale.

Panoramic Lyα survey in SSA22

The prevalence of Ly α blobs depends on environment.

ADF22: ALMA Deep Field in SSA22

Primal strategy of this project:

- 1. Contiguous mapping of the proto-cluster core.
- 2. Tracing various aspects of galaxy formation

e.g., HU et al. 2015, ApJ, 815, 8

And more multi-wavelength data is available/assembled.

Enhanced activity at the PC Core

Both star-formation and SMBH growth are accelerated in the core.

Extended Lya Emission in ADF22

"3D" view of galaxies/nuclei/filaments

HU et al. 2019

Galaxies and Filaments

Filaments expand to intergalactic space.

Powering source(s)

Enhanced local radiation field would cause bright fluorescent emission. Other mechanisms may also contribute it, though.

The role of gas filaments

HU et al. 2020, in prep

Filaments, which contain $>10^{12}$ Msun gas, would fuel the galaxy growth.

Expectation for Subaru

HSC NB497 Imaging will uncover Ly α filaments on cosmological scales. PFS will give us a complementary view, tracing HI absorption.

Summary

Proto-clusters in the early Universe are a nice laboratory to comprehend galaxy formation and evolution within cosmic structures.

In a z=3 proto-cluster core, we identify Ly α filaments on a Mpc-scale, which would provide original fuel for the growth of galaxies and SMBHs.

HSC/PFS on Subaru can play a unique role in uncovering the interplay between galaxies and filaments, utilizing their capability.