The Star Formation Properties of Merging Galaxies at 0.3<z<2.5

Andrea Silva (NAOJ)

andrea.silva@nao.ac.jp

Silva et al. 2018, ApJ 868 46S

Danilo Marchesini (Tufts Univ.), John Silverman (Kavli IPMU), Ros Skelton (SAAO), Daisuke Iono (NAOJ), Nick Martis (Tufts Univ.), Cemile Marsan (York Univ.), Ken-Ichi Tadaki (NAOJ), Gabriel Brammer (Cosmic Dawn Center), Jeyhan Kartaltepe (Rochester IT)

Why study high-z galaxy mergers?

The merging of two galaxies with similar mass (major mergers) can make profound changes in the morphology and the properties of galaxies

Why study high-z galaxy mergers?

- The merging of two galaxies with similar mass (major mergers) can make profound changes in the morphology and the properties of galaxies
- Their fraction seem to increase with redshift

Most of studies of major mergers at z>1 have focus on global statistics (e.g. merger rate) and not impact on properties

In this work, we focus on the SF properties of high-z merging galaxies

Method to Select Mergers

Lackner et al. 2014

We select galaxies with two intact nuclei separated by few kpc (just before coalescence).

Method to Select Mergers

Lackner et al. 2014

Selection of galaxy pairs with separations <100 kpc

We select galaxies with two intact nuclei separated by few kpc (just before coalescence).

Selection of galaxies with disturbed morphologies

Lackner et al 2014's method

- Select bright regions in an image
- Restrictions on the properties of these regions to select galaxy pairs at close separation

Apply method to near-IR HST/F160W images

- Selection of mergers in **rest-frame optical/NIR** out to z=2.5
- Centered on ~5700 galaxies with M_{star}>10¹⁰M_{sun} and
 - **0.3**<**z**_{best}<**2.5** in CANDELS (COSMOS, AEGIS, GOODS-N, GOODS-S, UDS) fields
- Match selected regions with 3D-HST catalogs (Skelton+14, Momcheva+16) to find properties
- Use redshifts to separate potential mergers from line of sight contaminants

Final Sample of Mergers

- Primary Sample: 130 merging systems (8.3<logM_{star}<11.5)</p>
- Projected distance 3-15 kpc
- Major Mergers constructed using a cut in stellar mass ratio
- **⋄** 0.3<z<2.5

❖ High-mass sample: 64 systems (both galaxies with M_{star}>10¹⁰M_{sun}, Guo+12)

We will focus mostly on this sample

Use UVJ colors to separate galaxies by type

Use UVJ colors to separate galaxies by type

Use UVJ colors to separate galaxies by type

Whitaker et al. 2015 Martis et al. 2016

Separate Galaxies

Quiescent (36%)

Star-forming dusty (42%) unobscured (22%)

Separate Mergers

Examples of Merger Types

Fraction dry/mixed/wet mergers

- Wet mergers are dominant at higher z
- Fraction dry mergers increases with cosmic time

Fraction dry/mixed/wet mergers

Fraction dry/mixed/wet mergers

Fractions of w/m/d mergers roughly constant with separation

Definition of Starburst

Comparison SF activity in Mergers & non mergers

At masses log(M_★/M_☉)>10 KS test: No difference log(SFR/M_☉) 12% of the O merger sample are starbursts z:[0.3,1.0) z:[1.0,1.5) All the starbursts log(SFR/M_☉ yr⁻ -1 o t are dusty SF 1. galaxies and are in wet mergers 0z:[2.0,2.5) z:[1.5,2.0) High fgas? 9 11 11 10 10

log(M_⋆/M_☉)

log(M_{*}/M_⊙)

Which of the merging galaxies is more affected?

The SF activity of the less massive member is more affected

% of less massive member have higher sSFR

Both log(M/M)<10 31% One log(M/M)>10 37% One log(M/M)>10.5 56%

Conclusions

❖We find no significant difference between the star formation activity in mergers and nonmergers → In agreement with recent simulations (e.g. Fensch+17). This merger sample is still in early stage yet to reach its maximum SF activity

❖ Lower mass and dusty merging galaxies are more affected by interaction → SF enhancement depends on properties of the galaxies

Silva et al. 2018, ApJ 868