

Subaru Instrumentation overview

Subaru Telescope's main instrument development: visible wide field imaging and spectroscopy:

Hyper Suprime Camera (HSC): 1.5 deg diameter FOV

Prime Focus Spectrograph (PFS): 2400 fibers at prime focus

Both instruments share same field corrector

Adaptive Optics instrumentation complements the wide field visible instruments (use of

bright time)

Subaru current AO instrumentation

All AO instrumentation currently on NasIR platform

Development in extreme-AO (SCExAO) and wide-field AO (RAVEN, ULTIMATE-SUBARU)

@ NAOJ

AO Development at Subaru

Extreme-AO (SCExAO)

SCExAO system currently offered with phase1 capabilities, still under heavy development

Major future upgrades include:

- near-IR science cameras: IFS (CHARIS) and MKIDs camera (MEC)
- visible light modules (FIRST, VAMPIRES)

Wide-field AO (ULTIMATE-SUBARU)

Multi-phase upgrade path to wide-field GLAO with multiple LGS Includes telescope upgrade with adaptive secondary mirror + 4 LGSs

AO development at Subaru prepares ELT era (Japan is major partner in TMT): Extreme-AO development at Subaru → imaging exo-Earths on ELTs Wide-field AO → complements narrow-field ELTs (target identification)

Layout of Subaru AO188/LGS

AO188 and IRCS on the Ns platform

AO188 optics

Number: 188
Effective: 90 mm
Blank Size: 130 mm
Manufacture: CILAS

DM electrode pattern

589nm laser

6.8W laser beam transported by single mode fiber to 500mm diameter laser launch telescope (center launch) \rightarrow mR \sim 12 LGS

Performance v.s. GS mag (NGS mode)

Performance v.s. TT/GS (LGS mode)

High contrast imaging / exoplanets (<2014)

Lyot Coronagraph

camera Spectral and polarimetric differential imaging

High contrast imaging / exoplanets (2014+)

SCExAO (summer 2013)

Visible bench:
ExAO WFS
VAMPIRES
FIRST (injection)
Vis imaging

FIRST recombination bench

Near-IR bench:

ExAO correction (2000 act DM)
Coronagraphy (PIAA, OVC etc..) 13
Near-IR WFS (LOWFS + speckle control)

8.2m Subaru Telescope

Facility AO system

SCExAO

Science camera (HiCIAO)

SCExAO architecture

Optimized for high contrast imaging at small inner working angle

coronagraphs: PIAA(CMC), OVC, 4QPM, SPC, 8OCT

Wavefront sensors:

VISIBLE:

Non-modulated pyramid,
 3.7kHz sampling

Near-IR:

- coronagraph LOWFS, integrated with coronagraph design
- Speckle control (currently with InGaAs detector, soon with MKIDs)

Wavefront control architecture

Using a deformable mirror to measure and control focal plane speckles

Taking advantage of the full PIAA - focal plane mask - PIAA⁻¹ optical configuration

SCExAO's PIAA coronagraph permits speckle control from 1.5 to 14 λ /D Raw contrast \sim 3e-4 inside the DM control region

SCExAO DM control region

Single pair of long exposures (1.5 sec) on Pollux by HiClAO Reduction of the diffraction features in raw images – mean increase in contrast of \sim 2 for brightest ring. Standard deviation reduced by 7x

MKIDs + MEMS for a smart focal plane high contrast camera (NAOJ / UCSB)

Enables photon-counting performance in near-IR, with energy resolution

MKIDs detector

MKIDs image @ Palomar

Exo-Earth targets within 20 pc

CHARIS integral field spectrograph (NAOJ/Princeton)

Visible imaging at diffraction limit (17 mas FWHM)

(fast frame imaging + Fourier Lucky)

β Delphini

Resolved image of Betelgeuse

λ=680 nm

VAMPIRES (Univ. of Sydney)

Aperture masking

interferometry for

Chi Cyg diameter

No polarised structure detected around chi cyg. However (unpolarised) diameter still measured:

Chi Cyg Power spectrum (log scale) Note fall-off in power at longer BLs, since object is resolved.

VAMPIRES Measurement (U.D. Diameter):

32.2 ± 0.13 mas (750 nm)

Literature Values (U.D. Diameter):

 $32.8 \pm 4.10 \text{ mas (V band)}$

CHARM Catalogue, Richichi et al. 2005

FIRST module on SCExAO visible bench

FIRST recombination bench

η Pegasi: Preliminary results

Achievements at Lick Observatory (3m)

η Peg : Sep ~ λ /**D** ; Δ m=3.6 at 800nm

(+ other binaries : β CrB, χ Dra, β Peg)

Median CP statistical error: 1.5°

Median CP systematic error: 1.7°

Sensitivity limit: R < 3.5

Preliminary analysis of Subaru data taken on July 25th 2013

Median CP statistical error: 0.8°

Median CP systematic error : **1.0**°

→ detection limit (4 σ) : 240 at λ /D

Sensitivity limit: R_{mag} < 4.5

RAVEN

Olivier Lardière, Dave Andersen, Célia Blain, Colin Bradley, Darryl Gamroth, Kate Jackson, Reston Nash, Kim Venn, Jean-Pierre Véran, Carlos Correia, Shin Oya, Yutaka Hayano, Hiroshi Terada, Yoshito Ono, Masayuki Akiyama

3 open loop WFSs

Raven Concept

- 10x10 0.4"pixel SH-WFS
- 13x13 (11x11 in pupil) actuator ALPAO DMs
- No derotator, no ADC in front of Raven

On-sky Preliminary Results

SCAO

IRC\$ slit

•

EE=41%

2000

1000

%EE in 140mas in J-band

MOAO Results on Saturn

O. Lardière et al. — On-sky MOAO results from Raven — SPIE Montreal, June 25, 2014

<u>U</u>ltra-wide-field
<u>L</u>aser
<u>Tomographic</u>
<u>I</u>mager and
<u>M</u>OS with
<u>A</u>O for
<u>T</u>ranscendent
<u>Exploration by
SUBARU</u> telescope.

Primary Investigator
Nobuo Arimito (NAOJ)
(Director of Subaru Telescope)

Project Scientist Tadayuki Kodama (NAOJ)

Project Manager Yutaka Hayano (NAOJ)

System overview

http://www.naoj.org/Projects/newdev/ngao/

- 1. Ground Layer AO with Adaptive Secondary Mirror (4 LGSs)
- 2. New Near-IR Instrument (Wide-field Imager + MOS)
- → Seeing Improvement (FWHM 0.4"→0.2") over FOV >15'
 - High Spatial Resolution Competitive to HST at NIR
 - Higher Sensitivity Equivalent to 2x Telescope Aperture^{*1}
 - 6 Times Wider Field of View*2
- Targeted to Start Operation in 2020

- *1 For point sources.
- *2 Relative to MOIRCS (seeing limited NIR instrument)

Key science goals

Discovery of the Most Distant Galaxies at z>7.5 Complete Census of the Galaxy Evolution

- Understand of the Cosmic Reionization
- NBF imaging survey (~ 180 arcmin²), 100 galaxies.
- Target sample for TMT

z=7.215 Discovered by Subaru/Suprime-Cam

(Shibuya+ 2012)

What are the key parameters to drive the galaxy evolution? What determines morphologies of the galaxies?

- Large-Scale Near-IR Surveys (Imaging and spectroscopy) of about 5000 galaxies at z = 1 - 3.
- Morphological information (size, radial profiles, color distributions), star forming regions, large scale structure and environmental effect by wide-field imaging.
- Kinematics, Inflows and Outflows, SFR, Chemical compositions by multi-object spectrograph.

Prepared by T. Kodama

GLAO simulation

13N

percentile	25%-ile	50%-ile	75%-ile			
seeing	(good)	(moderate)	(bad)			
height	fractional contribution					
$0\mathrm{km}$	0.4777	0.5507	0.5000			
0.06 km	0.2055	0.1957	0.1872			
$0.5\mathrm{km}$	0.0394	0.0605	0.0860			
$1 \mathrm{km}$	0.0137	0.0204	0.0359			
$2 \mathrm{km}$	0.1107	0.0234	0.0400			
$4\mathrm{km}$	0.0488	0.0546	0.0518			
$8\mathrm{km}$	0.0313	0.0429	0.0556			
$16\mathrm{km}$	0.0731	0.0518	0.0435			
$\int C_N^2 \times 10^{-13} \text{m}^{1/3}$	3.5749	5.2736	8.1315			
$r_0(0.5 \mu {\rm m})$	14.9cm	11.8cm	9.1cm			
$fwhm(0.5\mu m)$	0.56"	0.73"	0.97"			
fwhm(AG)	0.49"	0.64"	0.84"			

Turbulence profile

FWHM

Add to match seeing statistics at Subaru.		R	J	Н	K
	Seeing	0.65"	0.51"	0.49"	0.44"
TMT site test at	GLAO	0.41"	0.27"	0.23"	0.20"

Ensquared Energy (0.24"x0.24")

	R	J	Н	K
Seeing	9%	12%	15%	17%
GLAO	16%	29%	36%	41%

S. Oya

Preliminary model for ASM

Conclusions

Current capabilities:

AO188 facility AO (NGS+LGS) High contrast imaging (HiCIAO, SCExAO)

Active ongoing development in extremeAO / exoplanets (SCExAO + associated instruments/modules)

Future telescope upgrade to provide GLAO correction over ~>10' FOV (ULTIMATE-Subaru)

AO development at Subaru prepares ELT era:

Subaru Telescope = prime wide field facility for large FOV work not possible on ELTs, including target identification for ELTs

ExAO development → direct imaging and spectroscopy of habitable planets on ELTs