Understanding the Mechanism of Jet Launching in Active Young Stars (S17B036I)

— Progress Report —

Hiro Takami (ASIAA)
Project Outline

• What we would like to understand
 • Mechanism of Jet Launching
 • Its physical link with mass accretion

• Major Objective
 • Investigate time correlation between jet ejection & mass accretion onto the star

• Target Stars
 • RW Aur A, RY Tau, DG Tau

• Facilities
 • Jet Imaging ([Fe II] 1.64 μm) with Gemini-NIFS (2012-)
 • Optical Spectroscopy with CFHT ESPaDOnS (2010-)
 • Optical Photometry with CrAO 1.3-m etc. (2010-)

S17B036I
17B, 18B, 19B
5.63 hr for each
Project Outline

RY Tau (blueshifted)

RW Aur A (redshifted)

Ejections covered with CFHT observations
Jet Ejection!

Jet Ejection w/o line profile change

Jet Ejection?

Enhanced mass accretion induced?

Na D

Hα

Ca II

V (km s⁻¹)
Progress since 2017

• 17B,(18A) No Data
 • VLT-SINFONI data for 2 stars were obtained through ESO DDT as an alternative

• 18B observations successfully completed

• Upgrade of the data reduction tool almost completed
 • Observatory’s standard script requires some interactive processes, which may be too much for our data (36 on-source frames for a single visit to a star)

• We will start analysis with all the data soon
Upgrading Data Reduction Tool

- **Telluric Standards**
 - automatic detection of the continuum level
 - automatic removal of Br absorption
 - stacking with the GUI tool
 - Completed

- **Stacking Object Frames**
 - GUI tool for immediately finding & removing bad frames
 - automatic correction for image shift & V_{Hel}
 - Completed

- **Telluric Correction**
 - (semi-)automatic scaling of the absorption feature
 - automatic correction of wavelength shift
 - Completed

- **Flux calibration**
 - automatic detection of the continuum level
 - correction of the core/halo flux ratio of the PSF
 - Completed
Upgrading Data Reduction Tool

- **Continuum Subtraction**
 - to be completed in a week...

Offset (arcsec)

<table>
<thead>
<tr>
<th>2014-12-29</th>
<th>2017-02-17</th>
<th>2018-11-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>-246 km⁻¹</td>
<td>-247 km⁻¹</td>
<td>-238 km⁻¹</td>
</tr>
<tr>
<td>-217 km⁻¹</td>
<td>-218 km⁻¹</td>
<td>-209 km⁻¹</td>
</tr>
<tr>
<td>-188 km⁻¹</td>
<td>-189 km⁻¹</td>
<td>-180 km⁻¹</td>
</tr>
<tr>
<td>-159 km⁻¹</td>
<td>-160 km⁻¹</td>
<td>-151 km⁻¹</td>
</tr>
<tr>
<td>-130 km⁻¹</td>
<td>-131 km⁻¹</td>
<td>-122 km⁻¹</td>
</tr>
<tr>
<td>-101 km⁻¹</td>
<td>-101 km⁻¹</td>
<td>-92 km⁻¹</td>
</tr>
<tr>
<td>-71 km⁻¹</td>
<td>-72 km⁻¹</td>
<td>-63 km⁻¹</td>
</tr>
<tr>
<td>-42 km⁻¹</td>
<td>-43 km⁻¹</td>
<td>-34 km⁻¹</td>
</tr>
<tr>
<td>-13 km⁻¹</td>
<td>-14 km⁻¹</td>
<td>-5 km⁻¹</td>
</tr>
</tbody>
</table>

W m⁻² μm⁻¹ arcsec⁻²

1e⁻¹³ 7

-2 -1 0 1 2 Offset (arcsec)