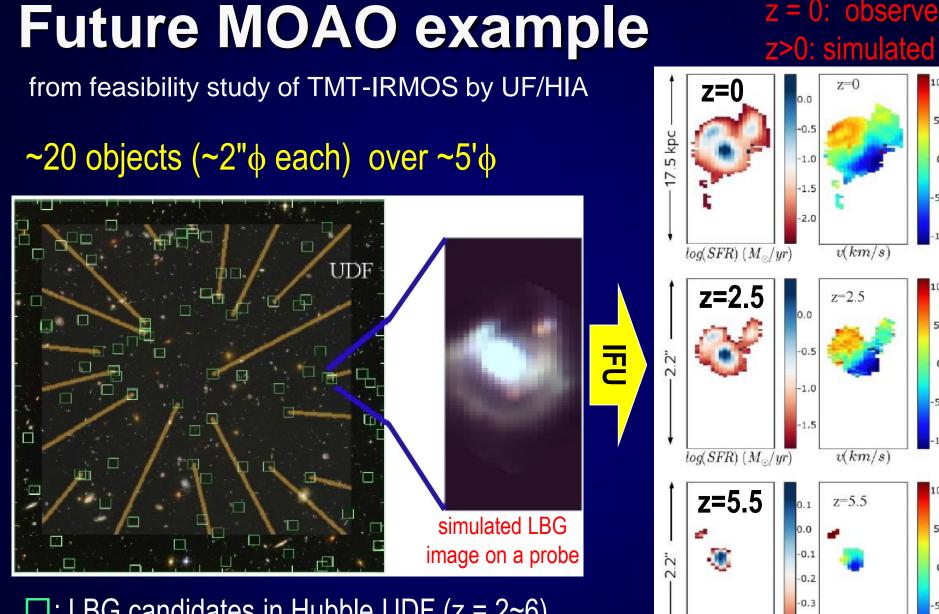
Subaru User's Meeting FY2013

2014/1/21 @ NAOJ(Mitaka)

Overview of RAVEN Project

- MOAO demonstrator (targeting 1st on 8m class)
 - Experiment in laboratory room
 - On-sky engineering & science verification
- Canadian group project
 - 6M CAD by BCKDF/CFI Leading Edge Fund
 - University of Victoria (UVic)
 - Herzberg Institute for Astronomy (HIA)
- Supported by Japanese group
 - Subaru Tel. (infra/manpower, researcher exchange, M.Ito)
 - Tohoku Univ. (basic experiment in laboratory, Y.Ono)
- Schedule
 - 2014: Test in Sim.Lab (Jan-Apr); 1st Eng.Obs. in May
 - 2nd Eng.Obs in S14B?

History


2009 Sep 24,25: Face-to-face Meeting @ Victoria 2010 Mar 16,17: Kick-off Meeting @ Victoria May 1-3: 1st Interface-meeting @ Hilo 2011 Mar 7,8: Conceptual Design Review @ Victoria Dec 15: Subaru Internal Review @ Hilo 2012 Nov 20,21: 1st Science Meeting @ Sendai 2013 Jul 25: 2nd Science Meeting @ Kona Nov 26: Pre-shipping Meeting @ Victoria 2014 Jan 6: Delivery to Hilo

Status Update: ~every 6 months Interface Control Document: frequent update, based on e-mail discussion

Why MOAO?

Why AO unit is prepared for each object?

- For AO, it is difficult to realize both of "wide-field" and "correction performance".
- Suitable for 30m telescopes
 - large focal plane
 - the size of conventional AO will be too large
 - reasonable size if divided for each object
 - Field-of-Regard (pick-up field size) increases with the telescope diameter

z = 0: observed

100

50

0

-50

-100

100

50

-50

-100

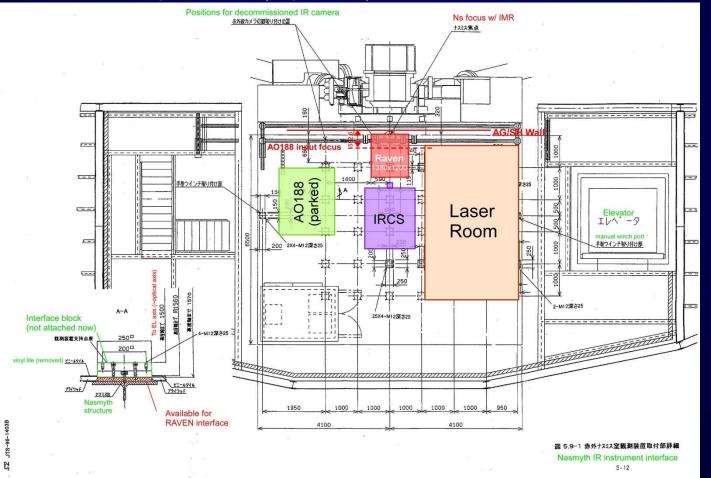
100

50

0

-50

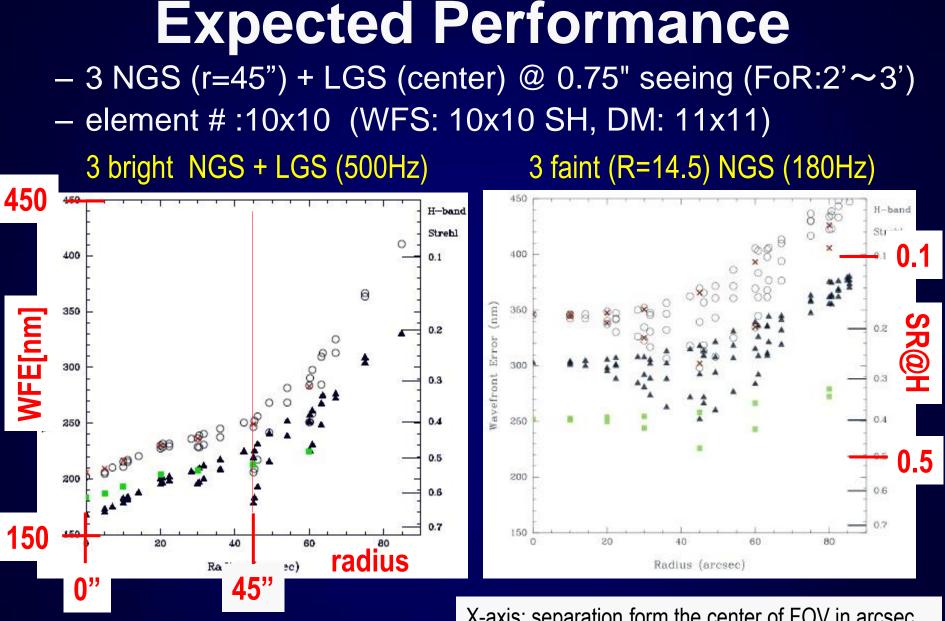
0.4


log(SFR)

 \Box : LBG candidates in Hubble UDF (z = 2~6) -: MOAO probe

At Subaru Telescope

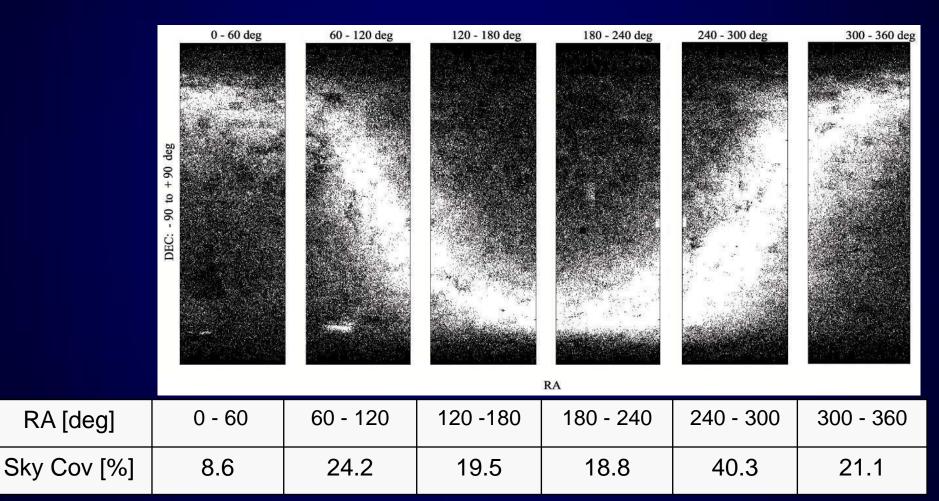
- treated as a carry-in instrument
- installed on NsIR; science instrument is IRCS


Subaru NsIR platform (top view)

System Specifications

Number of Science CH	2 (= number of DM)
WFS	3 NGSs +1 LGS / 10x10 SH (R<14)
DM	11x11 (ALPAO 97)
Field size	FoR: 3.5' for NGS (2' Φ full for Sci) FoV: 4" each channel
Wavelength range	Sci: 0.9-4um ; WFS: 0.6-0.9um
Science instrument	IRCS (Imaging, Grism, Echelle)
Ensqured Energy	> 30% in 140mas slit (0.75" seeing)
System Throughput	> 80% of AO188

2 NGS + 1 LGS is also possible; i.e., at least 2 NGSs are necessary in 3.5'Φ Details are available at: http://web.uvic.ca/~ravenmoa/index.html



by D. Andarsen

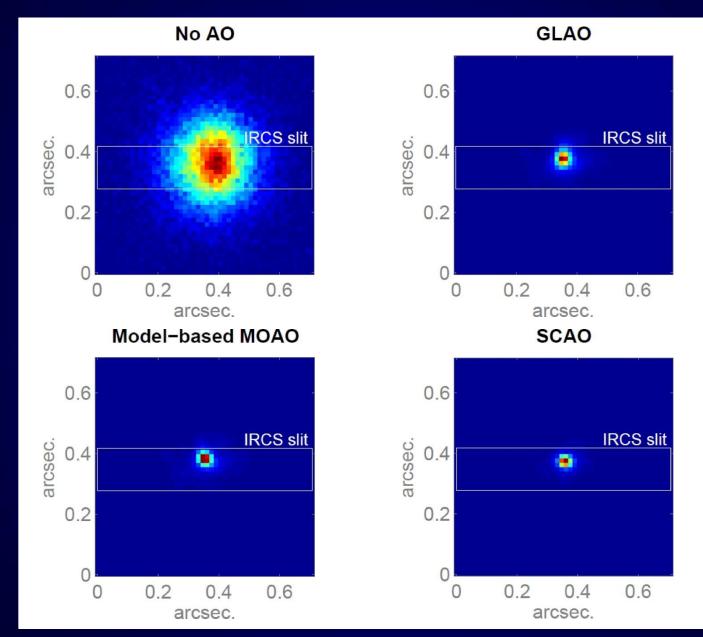
X-axis: separation form the center of FOV in arcsec Y-axis left: WFE in nm: O all modes; ▲ TT removed right: SR ×; ■ EE (140mas)

Sky Coverage

3 NGSs (R<14mag) within 2.7' φ

by C. Blain

Science Cases


• Merit

Multiplicity and/or Simultanetiy

- Proposed ideas in the science meetings
 - Galactic
 - Bulge (metal poor stars, globular cluster)
 - Galactic Center (young star cluster candidates)
 - Atmosphere (protoplanet, exoplanet)
 - Extragalactic
 - Nearby Galaxies (stellar population, globular clusters)
 - Super Star Clusters
 - Kinematics (galaxy asymmetries, lensed galaxies)
 - QSO host galaxies

Slides are available at: http://web.uvic.ca/~ravenmoa/meetings.html

Resent Status: UVic Lab.

Nov 26, 2013

Resent Status: Delivery

Jan 6, 2014

Resent Status: SimLab

Jan 7, 2014

Jan 17, 2014 Alignment has been done

Summary

- MOAO demonstrator
 - collaboration between Canada and Japan
 - project scale: 6M CAD / 3yr + α
 - targeting the 1st on 8m class telescope
- At Subaru Telescope
 - carry-in instrument; uses IRCS @ NsIR + LGS
 - 2014~(2015) Hilo/summit; 1st Eng.Obs. in May
 - tomography, open-loop control & calibration
 - on-sky science verification
- Observation condition
 - 2 objects over $2'\phi + \alpha$ FoR 3(2) NGS (R<14) over 2.7' ϕ FoR + LGS (center)
 - best SR@H=0.5 (3 bright NGS+1 LGS @ 500Hz)
 =0.17 (3 faint NGS @ 180Hz)