Poster+3min oral Abstracts


T01
Dust Formation by Evolved Massive Stars based on Observations with Subaru/COMICS
  º¸¶á ¼ù (ÅìµþÂç³Ø)
WR140 is one of the well known periodically dust-making WR binaries. The dust formation efficiency is expected to enhance whenever the secondary comes near the periastron of the primary. WR140 passed through the periastron in January 2009 and we have carried out the mid-infrared observation of WR140 with Subaru/COMICS. Especially, mid-Infrared spectroscopic observations of dust shell formed during the periastron passages are crucial to constrain the composition and the properties of dust. Multi-epoch mid-infrared observations of WR140 with Subaru/COMICS will surely help us illustrate the chemical evolution scenario of dust from its birth to a journey into the interstellar space. In this presentation, I will present the latest observational results on WR140 with Subaru/COMICS and discuss the properties of dust formed around the WR binary system.


T02
  ÂçÌù ¿Ê´î (ISAS/JAXA)
¡Ö¤¢¤«¤ê¡×Á´Å·¥µ¡¼¥Ù¥¤¥«¥¿¥í¥°
ÀÖ³°Àþŷʸ±ÒÀ±¡Ö¤¢¤«¤ê¡×¤Ï¡¢Ãæ´Ö¡¦±óÀÖ³°ÀþÁ´Å·¥µ¡¼¥Ù¥¤¤ò¹Ô¤Ã¤¿¡£»È¤Ã¤¿ÇÈĹ¤Ï¡¢9¡¤18¡¤65¡¤90¡¤140¡¤160¥ß¥¯¥í¥ó¤Î6¥Ð¥ó¥É¤ÇÁ´Å·¤Î90¥Ñ¡¼¥»¥ó¥È°Ê¾å¤ò¥«¥Ð¡¼¤·¤Æ¤¤¤ë¡£Ëܥǡ¼¥¿¤ò¸µ¤ËÁ´Å·¤ÎÀÖ³°ÀþÅÀ¸»¥«¥¿¥í¥°¤ÎºîÀ®¤ò¹Ô¤¤¡¢IRASÁ´Å·¥µ¡¼¥Ù¥¤¤Î¤ª¤è¤½3ÇܤÎÅ·ÂΤθ¡½Ð¤ËÀ®¸ù¤·¤¿¡£¸½ºß¥Ù¡¼¥¿ÈǤò¥Á¡¼¥à¥á¥ó¥Ð¡¼¤Ë¸ø³«¤·¤Æ¤ª¤ê¡¢º£Ç¯ÅÙÃæ¤Î°ìÈ̸ø³«¤òÌܻؤ·¤Æ¤µ¤é¤Ê¤ë²þÁ±¤ò¹Ô¤Ã¤Æ¤¤¤ë¡£¤³¤ì¤é¤ÎÅÀ¸»¥«¥¿¥í¥°¤Ë¤Ï¡¢¤½¤ÎÁÇÀ­¤òÄ´¤Ù¤ë¤¿¤á¤Ë¡¢¤¹¤Ð¤ë¤ò´Þ¤á¿¤¯¤Î˾±ó¶À¤ÇÄɴѬ¤ò¹Ô¤ï¤ì¤Ù¤­¤â¤Î¤¬Â¿¿ô´Þ¤Þ¤ì¤Æ¤¤¤ë¡£¼ÂºÝÃæ´ÖÀÖ³°Àþ¸»(9¥ß¥¯¥í¥ó¸¡½Ð¸Â³¦50mJy)¤Î¤Ê¤«¤Ë¤Ï¡¢ÀÖ³°Àþ¤ÇĶ²á¤·¤¿À±¤ä¿Ð¤Ëʤ¤ï¤ì¤¿³èÆ°¶ä²Ï³Ë¤â¿·¤¿¤Ë¸«ÉÕ¤«¤Ã¤Æ¤­¤Æ¤ª¤ê¡¢ ¤½¤ÎÌÀ¤ë¤µ¤Î¤¿¤á¤ËIRCS¤äCOMICS¤Ç¤Î¾ÜºÙ¤Êʬ¸÷´Ñ¬¤â½½Ê¬²Äǽ¤È¤Ê¤Ã¤Æ¤¤¤ë¡£


T03
¤¹¤Ð¤ëCOMICS¤Ë¤è¤ëÂç¼ÁÎÌÀ±¼þ±ßÈפÎÀÖ³°Ä¾ÀÜÁü¸¡½Ð
  ²¬ËÜ Èþ»Ò (°ñ¾ëÂç³Ø)
8m¤¹¤Ð¤ë˾±ó¶À¤ÈCOMICS¤òÍѤ¤¤ë¤³¤È¤Ë¤è¤êÆÀ¤é¤ì¤ë¡¢0.3ÉóѤιâ²òÁüÅÙ¤È °ÂÄêÀ­¡¢¤Þ¤¿¡¢Ãæ´ÖÀÖ³°Àþ°è¤Ê¤é¤Ç¤Ï¤ÎÃæ¿´À±¤È±ßÈפÎÄ㥳¥ó¥È¥é¥¹¥È¡¢¤È¤¤¤¦ ¥á¥ê¥Ã¥È¤Ë¤è¤ê¡¢¶á˵¤ÎYSO±ßÈפκÇÆâ¦Îΰè¤ò½½¡Á¿ô½½AU¥¹¥±¡¼¥ë¤Ç ¶õ´Öʬ²ò¤·¡¢¤½¤Î¹½Â¤¤äÆÃħ¤òµÄÏÀ¤¹¤ë¤³¤È¤¬²Äǽ¤Ç¤¢¤ë¡£ ¤³¤Î¤è¤¦¤Ë¤·¤Æ¡¢¤³¤ì¤Þ¤Ç¡¢Ãæ¼ÁÎÌÀ±¼þ±ßÈפǤ¢¤ëHerbig Ae/Be·¿À±¤ò Ãæ¿´¤Ë¡¢Ê£¿ô¤Î±ßÈפòʬ²ò¤¹¤ë¤³¤È¤ËÀ®¸ù¤·¤Æ¤­¤¿¡£º£²ó¡¢¤³¤ÎÃæ¤Ç¡¢Ãæ¿´À±¼ÁÎ̤¬ 8¡Á10ÂÀÍÛ¼ÁÎÌÄøÅ٤ȸ«¤é¤ì¤ëHerbig Be·¿À±HD200775¤Ç¡¢¤½¤Î¼þ°Ï¤Ë¡¢È¾·Â 750¡Á1000AU¤Û¤É¤â¤Ò¤í¤¬¤ëÂʱ߷Á¤ÎÃæ´ÖÀÖ³°ÀþÊü¼Í¤òȯ¸«¤·¤¿¡£¤³¤ÎÊü¼Í¤Ï¡¢ ²áµî¤Î¥¢¥¦¥È¥Õ¥í¡¼³èÆ°¤Ë¤è¤Ã¤Æºî¤é¤ì¤¿CO¥­¥ã¥Ó¥Æ¥£¤Èľ¸ò¤·¡¢Ãæ¿´¤Î¶áÀÜÏ¢À± ¤Îµ°Æ»¼Í±ÆÊý¸þ¤ÈÊ¿¹Ô¤Ç¤¢¤ê¡¢±ßÈפȲò¼á¤Ç¤­¤ë¡£Åùµ±ÅÙÀþ¤Î²òÀϤ«¤é ±ßÈפ¬¥Õ¥ì¥¢¤·¤Æ¤¤¤ë¤¬¡¢Herbig Ae·¿À±HD97048¤Ç¸«ÉÕ¤«¤Ã¤Æ¤¤¤ë¥Õ¥ì¥¢±ßÈ× (Lagage et al. 2006)¤ËÈæ¤Ù¤ë¤È±ßÈפϤè¤êʿó¤Ç¤¢¤ë¡£¤µ¤é¤Ë¡¢ÅÅÇÈϢ³ÇÈ ´Ñ¬¤È¤ÎÈæ³Ó¤«¤é¡¢Ãæ¿´À±¤ÎÅÅÎ¥Êü¼Í¤Ë¤è¤Ã¤Æ¸÷¾øȯ¤òµ¯¤³¤·¤Ä¤Ä¤¢¤ë¤è¤¦¤À¡£ ¤³¤Î´Ñ¬¤Ï¡¢Âç¼ÁÎÌÀ±¼þ¤È¤·¤Æ½é¤á¤Æ¤Î¾ÜºÙ¤Ë¶õ´Öʬ²ò¤µ¤ì¤¿ÀÖ³°ÀþľÀÜÁü ¸¡½Ð¤ÎÀ®¸ù¤È¤Ê¤ê¡¢Âç¼ÁÎÌÀ±·ÁÀ®¤Î¥á¥«¥Ë¥º¥à(±ßÈ×¹ßÃ夫¡¢¹çÂηÁÀ®¤«)¤Ë¤Ä ¤¤¤Æ¤ÎĹǯ¤ÎµÄÏÀ¤ËÂФ·¤Æ¡¢±ßÈ×¹ßÃå¤ò»Ø¼¨¤¹¤ë·ë²Ì¤È¤Ê¤ë¡£


T04
Äã¶â°Î̲¼¤Ë¤ª¤±¤ë¸¶»ÏÏÇÀ±·Ï±ßÈפμ÷Ì¿
  °Â°æ Àé¹á»Ò (ÅìµþÂç³Ø)
¤ï¤¿¤·¤¿¤Á¤Ï¡¢¶â°Î̤¬ÂÀÍÛ¶á˵¤ËÈæ¤Ù¤ÆÈó¾ï¤ËÄ㤤 (Ìó1/10) ¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¶ä²Ï·Ï³°±ïÉô (¶ä²ÏȾ·Â>=15 kpc) ¤ÎÀ±À¸À®Îΰè¤ËÂФ·¤Æ¡¢¤¹¤Ð¤ë˾±ó¶À MOIRCS ¤òÍѤ¤¤¿ JHK ¥Ð¥ó¥É¤Î¶áÀÖ³°Àþ¿¼»£Áü¥µ¡¼¥Ù¥¤¤ò¤¹¤¹¤á¤Æ¤¤¤ë¡£Ëܸ¦µæ¤Ç¤Ï¡¢Äã¶â°Î̲¼¤Î¸¶»ÏÏÇÀ±·Ï±ßÈפοʲ½¤òÅý·×Ū¤ËÌÀ¤é¤«¤Ë¤¹¤ë¤³¤È¤òÌÜɸ¤Ë¡¢Ç¯Îð¤¬0 ¡Ý3 Myr¤ËʬÉÛ¤¹¤ë 6 ¤Ä¤ÎÀ±À¸À®¥¯¥é¥¹¥¿¡¼¤Ë¤Ä¤¤¤Æ¡¢¸¶»ÏÏÇÀ±·Ï±ßÈפÎÆ⦠<~0.1 AU ¤«¤éÀ¸¤¸¤ë¶áÀÖ³°Àþ¤Î¿§Ä¶²á¤ò»ý¤ÄÀ±¤Î³ä¹ç (disk fraction) ¤òÄ´¤Ù¤¿¡£¤½¤Î·ë²Ì¡¢Äã¶â°Î̲¼¤ÎÀ±À¸À®¥¯¥é¥¹¥¿¡¼¤Î disk fraction ¤Ï¡¢Æ±Ç¯Îð¤ÎÂÀÍÛ¶á˵¤ÎÎΰè¤ÈÈæ³Ó¤·¤Æ·ÏÅýŪ¤Ë¡Ê¶Ëü¤Ë¡ËÄ㤤¤³¤È¤¬ÌÀ¤é¤«¤Ë¤Ê¤Ã¤¿¡£¶â°Î̤¬Ä㤤¤³¤È¤«¤éÄ̾ï¹Í¤¨¤¦¤ëʪÍý²áÄø¤Ç¤Ï¡¢±ßÈ×Æ⦤À¤±¤¬¶õƶ¤Ë¤Ê¤ë¤³¤È¤òÀâÌÀ¤Ç¤­¤Ê¤¤¤¿¤á¡¢Äã¶â°Î̲¼¤Ç¤Ï ¡È±ßÈ×Á´ÂÎ¡É ¤¬ÂÀÍÛ¶á˵ (~5 Myr)¤ÈÈæ¤Ù¤ÆÈó¾ï¤ËÁᤤ¥¿¥¤¥à¥¹¥±¡¼¥ë (~1 Myr) ¤Ç¾Ã¼º¤¹¤ë¤³¤È¤¬¶¯¤¯¼¨º¶¤µ¤ì¤¿¡£¤½¤³¤Ç¡¢Äã¶â°Î̲¼¤Ç±ßÈ׾üº¤¬Â®¤¯¤Ê¤ë¸¶°ø¤Ë¤Ä¤¤¤Æ¹Í»¡¤·¡¢±ßÈ×»¶°ï¤Î¥á¥«¥Ë¥º¥à¤½¤Î¤â¤Î¤Ë¤Ä¤±¤é¤ì¤ëÀ©¸Â¤òµÄÏÀ¤¹¤ë¡£¤Þ¤¿¡¢¶â°Î̤ÎÄã²¼¤Ë¤È¤â¤Ê¤¤±ßÈ׾üº¤¬Á᤯¤Ê¤ë¤È¤¤¤¦¤³¤È¤Ï¡¢ÏÇÀ±·ÁÀ®¤¬¤è¤êº¤Æñ¤Ë¤Ê¤ë¤³¤È¤ò°ÕÌ£¤¹¤ë¡£¤½¤³¤Ç¡¢º£²ó¸«¤Ä¤«¤Ã¤¿±ßÈ׾üº¤Î¶â°Ḭ̂͸À­¤¬¡¢·Ï³°ÏÇÀ±¤Î¥É¥Ã¥×¥é¡¼¥µ¡¼¥Á¤«¤é¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¡ÖÏÇÀ±¡Ý¶â°ÎÌ´Ø·¸¡×¤Ë¤É¤ì¤À¤±±Æ¶Á¤¹¤ë¤«¤Ë¤Ä¤¤¤Æ¤âµÄÏÀ¤¹¤ë¡£


T05
Shock Breakout¤òÍѤ¤¤¿±óÊý½ÅÎÏÊø²õ·¿Ä¶¿·À±¤Îõºº
  ÉÚ±Ê Ë¾ (¹ÃÆîÂç³Ø)
Ķ¿·À±Çúȯ¤Ë¤ª¤¤¤ÆÀ±ÆâÉô¤Ç·ÁÀ®¤µ¤ì¤¿¾×·âÇȤϡ¢Êª¼Á¤ò²ÃÇ®¤·¤Ê¤¬¤é³°¤Ø¿Ê¤ßÀ±É½Ì̤ËÅþ㤹¤ë¤È¤½¤ÎÇ®¥¨¥Í¥ë¥®¡¼¤òíռͤȤ·¤Æ²òÊü¤¹¤ë¡£¤³¤Î¸½¾Ý¤ÏShock breakout¤È¸Æ¤Ð¤ì¡¢¤½¤Î¸÷ÅÙ¡¦¥¹¥Ú¥¯¥È¥ë¤Ï¼ç¤Ë¿ÆÀ±¤Î¼ÁÎÌ¡¦È¾·Â¡¢Çúȯ¥¨¥Í¥ë¥®¡¼¤Ë°Í¸¤¹¤ë¡£Shock breakout¤Ï·Ñ³»þ´Ö¤¬Ã»¤¯(1ÆüÄøÅÙ)¤Þ¤¿¥Ô¡¼¥¯ÇÈŤ¬Ã»¤¤(ÆðXÀþ¡¦»ç³°Àþ)¤¿¤á´Ñ¬¤¬º¤Æñ¤Ç¤¢¤Ã¤¿¤¬¡¢2008ǯ¤Ë½é¤á¤ÆSwift±ÒÀ±¤äGALEX±ÒÀ±¤Ë¤è¤Ã¤ÆShock breakout¤ÎÁý¸÷¤«¤é¸º¸÷¤Þ¤Ç¤Î´Ñ¬¤¬½é¤á¤ÆÊó¹ð¤µ¤ì¤¿¡£¤½¤³¤Ç¡¢²æ¡¹¤Ï¡¢Â¿ÇÈĹíÕ¼ÍήÂη׻»¥³¡¼¥É STELLA ¤ÈÀ±¤Î¿Ê²½·×»»¤Ë´ð¤Å¤¤¤¿¿ÆÀ±¥â¥Ç¥ë¤òÍѤ¤¤Æ¡¢´Ñ¬¤µ¤ì¤¿IIP·¿Ä¶¿·À±¤Î shock breakout ¤«¤é plateau ¤Þ¤Ç¤Î¿¿§¸÷ÅÙ¶ÊÀþ¤òºÆ¸½¤·¤¿¡£¤½¤Î·ë²Ì¤òÍѤ¤¤Æ±óÊýĶ¿·À±Çúȯ¤ÎShock breakout¤ÎÊü¼Í¶¯ÅÙ¤ò¸«ÀѤâ¤Ã¤¿¡£¤½¤Î·ë²Ì¡¢¤¹¤Ð¤ë˾±ó¶À¤Î¤è¤¦¤Ê8m¥¯¥é¥¹¤Î˾±ó¶À¤òÍѤ¤¤ÆÀÖÊýÊаÜ1¤òĶ¤¨¤ë±óÊý¤ÎĶ¿·À±Shock breakout¤ò´Ñ¬²Äǽ¤Ç¤¢¤ë¤³¤È¤¬ÌÀ¤é¤«¤È¤Ê¤Ã¤¿¡£¤½¤³¤ÇÍýÏÀ¥â¥Ç¥ë¤Ë´ð¤Å¤¤¤¿Âç¸ý·Â˾±ó¶À¡¦¹­»ëÌî´Ñ¬ÁõÃÖ¤òÍѤ¤¤¿±óÊýĶ¿·À± Shock breakout ¤Î¹­»ëÌÁü¥µ¡¼¥Ù¥¤¤òÄó°Æ¤¹¤ë¡£


T06
SN dust shell surrounding a young IR galaxy
  ÀîÎÉ ¸øÌÀ (ÅìµþÂç³Ø)
Gemini GMOS¡ÊTime exchange program¡Ë¤òÍѤ¤¡¢SST J1604+4303¤Î¸÷³Øʬ¸÷¤ò¹Ô¤Ã¤¿¡£UV¤«¤é±óÀÖ³°Àþ¤Þ¤Ç¤Î¬¸÷¥Ç¡¼¥¿¤ÈÁȤ߹ç¤ï¤»¤Æ²òÀϤ·¤¿·ë²Ì¡¢°Ê²¼¤Î¤³¤È¤¬¤ï¤«¤Ã¤¿¡£(1)¤³¤ì¤Ïz=1.135¤Ë¤¢¤ëǯÎð¤Î¼ã¤¤¡Ê100 - 300 Myr)ULIRG¤Ç¤¢¤ë¡£¡Ê2)¥À¥¹¥È¤ËµÛ¼ý¤µ¤ì¤¿UV²Ä»ë¸÷¤Î¸÷Å٤ǥܥí¥á¥È¥ê¥Ã¥¯¸÷ÅÙ¤ÎÂçÉôʬ¤òÀâÌÀ¤Ç¤­¤ë¡£¡Ê3)À±·ÁÀ®Îΰè¤Ïforeground dust screen¤Ë¤è¤ëµÛ¼ý¤ò¼õ¤±¤Æ¤ª¤ê¡¢µðÂç¤Ê¥À¥¹¥È¤Î¥·¥§¥ë¤¬¶ä²Ï¤ò¼è¤ê°Ï¤ó¤Ç¤¤¤ë¤é¤·¤¤¡£(4)Calzetti¤ÎµÛ¼ý¶ÊÀþ¡Êlocal¤Êstarburst¤Î´Ñ¬¤ÇÆÀ¤é¤ì¤¿¶ÊÀþ¡Ë¤ÈÈæ¤Ù¤ë¤È¡¢Hirashita et al.¤ÎSN II ¥À¥¹¥È¤Ë¤è¤êµÛ¼ý¶ÊÀþ¤Î¤Û¤¦¤¬SST J1604+4303¤ÎSED¤Ë¤è¤¯¥Õ¥£¥Ã¥È¤·¡¢¤³¤ì¤ÏSNe II¤Ë¤è¤Ã¤Æ¥À¥¹¥È¤¬·ÁÀ®¤µ¤ì¤Æ¤¤¤ë¤³¤È¤ò¼¨¤¹¾Úµò¤Ç¤¢¤ë¡£


T07
¶ä²Ï·ÏÃæ¿´¤Ë¤ª¤±¤ë¹âÊи÷ÅÙÀ±¤Îȯ¸«
  µÁÀî ã¿Í (µþÅÔÂç³Ø)
²æ¡¹¤¬Â°¤¹¤ë¶ä²Ï·Ï¤ÎÃæ¿´1pc°ÊÆâ¤Ë¤ÏWRÀ±¤äOB·¿À±¤È¤¤¤Ã¤¿Áá´ü·¿À±¤¬Â¸ºß¤·¡¢¤³¤Î¤³¤È¤ÏÂç¼ÁÎÌ¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¶á˵¤Ç¤ÎÀ±À¸À®¤ò°ÕÌ£¤¹¤ë¡£Âç¼ÁÎÌ¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¶á˵¤Ï¤½¤Î¶¯¤¤Ä¬¼®ÎϤ«¤éÀ±À¸À®¤¬º¤Æñ¤Ê´Ä¶­¤È¹Í¤¨¤é¤ì¤Æ¤ª¤ê¡¢À±À¸À®¤Î¥·¥Ê¥ê¥ª¤Ë¤Ä¤¤¤ÆÍÍ¡¹¤ÊµÄÏÀ¤¬¤Ê¤µ¤ì¤Æ¤­¤¿¡£ ²æ¡¹¤ÏÈó¾ï¤Ë¼ã¤¤À±¡ÊÁ°¼ç·ÏÎóÀ±¡Ë¤«¤é¤Î¶¯¤¯Êи÷¤·¤¿¸÷¤ò¸¡½Ð¤¹¤ë¤¿¤á¡¢¤¹¤Ð¤ë˾±ó¶À¤ÎCIAO¤Ç¶ä²Ï·ÏÃæ¿´¤ÎÊи÷´Ñ¬¤ò¹Ô¤Ã¤¿¡£Èó¾ï¤Ë¼ã¤¤À±¤¬¸«¤Ä¤«¤ì¤Ð¡¢¤³¤ÎÎΰè¤ÇÀ±À¸À®¤¬¹Ô¤ï¤ì¤¿¤³¤È¤Î¾Úµò¤Ë¤Ê¤ë¡£º£²ó¤Î´Ñ¬¤Ï¡¢Ãæ¿´1pcÄøÅÙ¤ÎÎΰè¤Ë¤ª¤±¤ëÊи÷´Ñ¬¤È¤·¤Æ¤Ï¤³¤ì¤Þ¤Ç¤ÇºÇ¤â¿¼¤¤(mK<16)¤â¤Î¤È¤Ê¤Ã¤¿¡£²òÀϤηë²Ì¡¢¶¯¤¯Êи÷¤·¤¿À±¤¬20¸ÄÄøÅÙ¸«¤Ä¤«¤ê¡¢¤½¤Î¤¦¤Á6¤Ä¤Ë¤Ï¶õ´ÖŪ¤Ê½¸Ã椬¸«¤é¤ì¤¿¡£


T08
FMOS»î¸³´Ñ¬¤Î¥Ç¡¼¥¿²òÀÏ¡Ê­µ¡Ë ¡§ ¥Ç¡¼¥¿½èÍý¤Îή¤ì
  ²Ï¼ê ¹á¿¥ (µþÅÔÂç³Ø)
2007ǯËö¤Ë¥Õ¥¡¡¼¥¹¥È¥é¥¤¥È¤ò·Þ¤¨¤¿ FMOS ¤Ï¡¢ÍÍ¡¹¤ÊÄ´À°¤ä½é´üÉÔÎɤòÌó1ǯȾ¤«¤±¤Æ¹îÉþ¤·¡¢¸½ºß¤Ï¡¢´Ñ¬¤ò¥¹¥à¡¼¥º¤Ë¹Ô¤¦¤¿¤á¤ËɬÍפʺǾå°Ì¤Î¥³¥Þ¥ó¥É¥¹¥¯¥ê¥×¥È¤ÎÀ°È÷¤ä¡¢ºÇ¤â¸ú²ÌŪ¤Ê´Ñ¬¥·¡¼¥¯¥¨¥ó¥¹¤ÎÄ´À°¤ò¹Ô¤Ã¤Æ¤¤¤ë¡£ ¤½¤ì¤ÈʹԤ·¤ÆɬÍפʤΤ¬¡¢¥Ç¡¼¥¿²òÀÏ¥¹¥¯¥ê¥×¥È¤Î½àÈ÷¤Ç¤¢¤ë¡£ ¶áÀÖ³°¤Ë¤ª¤±¤ë¥Õ¥¡¥¤¥Ð¡¼Ê¬¸÷´ï¤Î¥¹¥Ú¥¯¥È¥ë²òÀϤϡ¢Ìë¸÷µ±Àþ¤Ê¤É¤ÎÇطʸ÷¤Îº¹¤·°ú¤­¤¬Ä̾ï¤Î¥í¥ó¥°¥¹¥ê¥Ã¥È´Ñ¬¤Î²òÀϤËÈæ¤Ù¤ÆÆñ¤·¤¯¡¢¤Þ¤¿¡¢ºÇ½ªF/1.6¤ÎÌÀ¤ë¤¤¸÷³Ø·Ï¤Ç4cm³Ñ¤Î¾ÇÅÀÌ̤˷ëÁü¤µ¤»¤Æ¤¤¤ë¤¿¤áÏĶʤ⤫¤Ê¤êÂ礭¤¤¡£ ¤½¤Î¤¿¤á¡¢IRAF ¤È cfitsio ¤òÍѤ¤¤¿ÀìÍÑ¥³¥Þ¥ó¥É¤òÁȤ߹ç¤ï¤»¤Æɸ½à²òÀÏ¥¹¥¯¥ê¥×¥È¤ò½àÈ÷¤·¡¢»î¸³´Ñ¬¤Î¥Ç¡¼¥¿²òÀϤò¹Ô¤Ã¤Æ¤¤¤ë¡£ ¤³¤ì¤Ë¤è¤ê¡¢¥Þ¥¦¥¹¥³¥Ô¡¼¤Ç¿ô¹Ô¤Î¥¹¥¯¥ê¥×¥È¤òή¤¹¤À¤±¤Ç¡¢Ïª½Ð½ªÎ»¸å¿ôʬ°ÊÆâ¤Ë¤½¤Î»þÅÀ¤Þ¤Ç¤Î£±¼¡½èÍý¤¬½ªÎ»¤·¡¢´Ñ¬¤Î¾õ¶·¤ò³Îǧ¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡£ ¤Þ¤¿¡¢ÇÈŤä¥Õ¥é¥Ã¥¯¥¹¤Î³ÓÀµ¤È£±¼¡¸µ²½½èÍý¤Þ¤Ç¿Ê¤á¤ë¤³¤È¤â´Êñ¤Ë¹Ô¤¦¤³¤È¤¬²Äǽ¤Ç¤¢¤ë¡£¥Ý¥¹¥¿¡¼¤Ç¤Ï¡¢FMOS ʬ¸÷¥Ç¡¼¥¿²òÀϤÎή¤ì¤ò¼ÂºÝ¤Î´Ñ¬²èÁü¤òÍѤ¤¤Æ¾Ò²ð¤¹¤ë¡£


T09
FMOS»î¸³´Ñ¬¤Î¥Ç¡¼¥¿²òÀÏ¡Ê­·¡Ë¡§µ±Àþ¥Õ¥é¥Ã¥¯¥¹¤ÎS/Nɾ²Á
  ½»µÈ ¾»Ä¾ (µþÅÔÂç³Ø)
¡¡¤¹¤Ð¤ë˾±ó¶À¼ç¾ÇÅÀ¿ŷÂÎʬ¸÷´ïFMOS¤Ï¡¢¼ç¾ÇÅÀÌ̤ËÇÛÃÖ¤·¤¿£´£°£°Ëܤθ÷¥Õ¥¡¥¤¥Ð¡¼¤Ë¤è¤ê¡¢Â¿¿ô¤ÎÅ·ÂΤθ÷¤ò¥Ê¥¹¥ß¥¹Âæ¤ËÀßÃÖ¤·¤¿£²Âæ¤Îʬ¸÷´ï¤ËƳ¤­¡¢¶áÀÖ³°Àþ°è¡Ê0.9¡Ý1.8¦Ì£í¡Ë¤Î¥¹¥Ú¥¯¥È¥ë¤òƱ»þ¤ËÆÀ¤ëÁõÃ֤Ǥ¢¤ë¡£Ê¬¸÷´ï¤Ï¡¢Äãʬ»¶¥â¡¼¥É¡ÊR=500¡Ë¤ÈÃæʬ»¶¥â¡¼¥É¡ÊR=2200¡Ë¤ò¤Î£²¤Ä¤Î¥â¡¼¥É¤òÈ÷¤¨¤Æ¤¤¤ë¡£Æäˡ¢Äãʬ»¶¥â¡¼¥É¤Ç¤ÏÌë¸÷¥Þ¥¹¥¯¥ß¥é¡¼¤Ë¤è¤êOHÌë¸÷¤ò½üµî¤·¡¢¤è¤ê°Å¤¤Å·ÂΤòʬ¸÷¤Ç¤­¤ëµ¡Ç½¤òÈ÷¤¨¤Æ¤¤¤ë¡£ ¡¡FMOS¤Ï¡¢¥Õ¥¡¡¼¥¹¥È¥é¥¤¥È°Ê¹ß¤ÎÍÍ¡¹¤ÊÄ´À°¤ò·Ð¤Æ¡¢¸½ºß¤Ï¡¢£²£°£±£°Ç¯£µ·î¤«¤é¤Î¶¦Æ±ÍøÍѳ«»Ï¤Ë¸þ¤±¤Æ¡¢Äãʬ»¶¥â¡¼¥É¤Ë¤ª¤±¤ëĹ»þ´ÖÀÑʬ¤Ç¤ÎÀ­Ç½É¾²Á¡¢´Ñ¬¥·¡¼¥±¥ó¥¹¤Î³ÎΩ¡¢ÌäÂêÅÀ¤ÎÀö¤¤½Ð¤·¤ò¹Ô¤Ã¤Æ¤¤¤ëÃʳ¬¤Ç¤¢¤ë¡£¤³¤ì¤Þ¤Ç¤Î»î¸³´Ñ¬¤Ç¡¢¤µ¤Þ¤¶¤Þ¤ÊϢ³¸÷¶¯ÅÙ¡¢µ±Àþ¶¯ÅÙ¤ÎÅ·ÂΤËÂФ·¤ÆĹ»þ´ÖÀÑʬ¤ò¹Ô¤¤¡¢¼ÂºÝ¤ÎÀ­Ç½¤òɾ²Á¤Ç¤­¤Ä¤Ä¤¢¤ë¡£¤Þ¤¿¡¢Ä¹»þ´Ö´Ñ¬¤ò¿ë¹Ô¤¹¤ë¾å¤ÇÃí°Õ¤¹¤Ù¤­ÅÀ¤â¤ï¤«¤Ã¤Æ¤­¤¿¡£ ¡¡º£²ó¡¢²æ¡¹¤Ï¡¢¼ÂºÝ¤Î»î¸³´Ñ¬¥Ç¡¼¥¿¤òÍѤ¤¤Æ¡¢µ±Àþ¥Õ¥é¥Ã¥¯¥¹¤ÎS/N¤Ë´Ø¤¹¤ëɾ²Á¤ò¹Ô¤Ã¤¿¡£¥Ç¡¼¥¿²òÀϤμêË¡¤È¤·¤Æ¤Ï¡¢FMOSÀìÍѲòÀÏ¥½¥Õ¥È¤òÍѤ¤¤¿¡£¤Þ¤¿¡¢FMOS¤Î¥¹¥Ú¥¯¥È¥ë¤«¤é·è¤á¤¿¶ä²Ï¤ÎÀÖÊýÊаܤÎÉÔÄêÀ­¤Ë´Ø¤·¤Æ¤â¡¢²Ä»ë¸÷¥¹¥Ú¥¯¥È¥ë¤«¤é¬Äꤵ¤ì¤¿ÀÖÊýÊаܤÈÈæ³Ó¤¹¤ë¤³¤È¤Çɾ²Á¤·¤¿¡£¹¹¤Ë¡¢¾­Íè´üÂÔ¤µ¤ì¤ëFMOS¤Î¥µ¥¤¥¨¥ó¥¹¤Ë´Ø¤·¤Æ¤âµÄÏÀ¤¹¤ëͽÄê¤Ç¤¢¤ë¡£


T10
FMOS»î¸³´Ñ¬¤Î¥Ç¡¼¥¿²òÀÏ¡ÊII¡Ë¡§Ï¢Â³¸÷¤ÎS/Nɾ²Á
  ÌðÉô À¶¿Í (µþÅÔÂç³Ø)
¤¹¤Ð¤ë˾±ó¶À¼ç¾ÇÅÀ¿ŷÂÎʬ¸÷´ïFMOS¤Ï¡¢¼ç¾ÇÅÀÌ̤ËÇÛÃÖ¤·¤¿400Ëܤθ÷¥Õ¥¡¥¤¥Ð¡¼¤Ë¤è¤ê¡¢Â¿¿ô¤ÎÅ·ÂΤθ÷¤ò¥Ê¥¹¥ß¥¹Âæ¤ËÀßÃÖ¤·¤¿2Âæ¤Îʬ¸÷´ï¤ËƳ¤­¡¢¶áÀÖ³°Àþ°è¡Ê0.9¡Ý1.8¦Ì£í¡Ë¤Î¥¹¥Ú¥¯¥È¥ë¤òƱ»þ¤ËÆÀ¤ëÁõÃ֤Ǥ¢¤ë¡£Ê¬¸÷´ï¤Ï¡¢Äãʬ»¶¥â¡¼¥É¡ÊR=500)¤ÈÃæʬ»¶¥â¡¼¥É¡ÊR=2200)¤òÈ÷¤¨¡¢Äãʬ»¶¥â¡¼¥É¤Ç¤ÏÌë¸÷¥Þ¥¹¥¯¥ß¥é¡¼¤Ë¤è¤êOHÌë¸÷¤ò½üµî¤·¡¢¤è¤ê°Å¤¤Å·ÂΤòʬ¸÷¤Ç¤­¤ëµ¡Ç½¤òÈ÷¤¨¤Æ¤¤¤ë¡£ FMOS¤Ï2010ǯ5·î¤è¤ê¶¦Æ±ÍøÍѤ¬»Ï¤Þ¤ëͽÄê¤Ç¤¢¤ë¡£¤³¤ì¤Ë¸þ¤±¤Æ¡¢Ä¹»þ´ÖÀÑʬ¤Ë¤ª¤±¤ë¼ÂºÝ¤ÎÀ­Ç½É¾²Á¡¢´Ñ¬¥·¡¼¥±¥ó¥¹¤Î³ÎΩ¡¢¤½¤ì¤Ëȼ¤¦ÍÍ¡¹¤ÊÌäÂêÅÀ¤ÎÀö¤¤½Ð¤·¤ò¿Ê¤á¤Æ¤¤¤ë¡£¤³¤ì¤Þ¤Ç¤Î»î¸³´Ñ¬¤Ç¡¢¤µ¤Þ¤¶¤Þ¤ÊϢ³¸÷¶¯ÅÙ¡¢µ±Àþ¶¯ÅÙ¤ÎÅ·ÂΤËÂФ·¤ÆĹ»þ´ÖÀÑʬ¡ÊºÇŤÇ4»þ´Ö¡Ë¤ò¹Ô¤¤¡¢¼ÂºÝ¤ÎÀ­Ç½¤¬É¾²Á¤Ç¤­¤Ä¤Ä¤¢¤ë¡£¤Þ¤¿¡¢Ä¹»þ´Ö¤Î´Ñ¬¤ò¹Ô¤¦¾å¤ÇÃí°Õ¤¹¤Ù¤­ÅÀ¤âʬ¤«¤Ã¤Æ¤­¤¿¡£ Ëֱܹé¤Ç¤Ï¡¢¤³¤ì¤Þ¤Ç¤Î»î¸³´Ñ¬¥Ç¡¼¥¿¤òÍѤ¤¤Æ¹Ô¤Ê¤Ã¤¿Ï¢Â³¸÷¤ËÂФ¹¤ëS/N¤Îɾ²Á¤òÊó¹ð¤·¡¢Ä¹»þ´ÖÀÑʬ¤ò¹Ô¤¦ºÝ¤ËÃí°Õ¤¹¤Ù¤­ÅÀ¤Ë¤Ä¤¤¤Æ¤âÊó¹ð¤¹¤ë¡£¤Þ¤¿¡¢¾­Íè´üÂÔ¤µ¤ì¤ëFMOS¤òÍѤ¤¤¿¥µ¥¤¥¨¥ó¥¹¤Ë¤Ä¤¤¤Æ¤âµÄÏÀ¤¹¤ë¡£


T11
NRO-SUBARU Collaboration I : GMCs and Star Formation in M33
  ¾®Ìî»û ¹¬»Ò (¹ñΩŷʸÂæ)
We introduce a legacy project of the Nobeyama Radio Observatory: the M33 all-disk giant molecular cloud (GMC) survey with the 45m telescope. Purpose of this project is to investigate the physical properties of GMCs and to understand evolutionary processes from GMC formation to star formation in GMCs by comparing the CO(1-0) properties with other various data, such as CO(3-2) and 1.1mm data obtained with the ASTE and optical data obtained with the SUBARU telescope. We emphasize the importance of collaborations of these telescopes for the ALMA era, since studies of GMCs in extragalaxies will be a key science of ALMA.


T12
NRO-SUBARU Collaboration II : Dust and its Heating Sources in M33
  KOMUGI Shinya (ISAS/JAXA)
The whole optical disk of the nearby face-on spiral galaxy M33 was mapped with the AzTEC bolometer camera on ASTE at 1.1 mm, with a resolution of 120 parsecs. This wavelength traces cold (<20K) dust, and we have succeeded in deriving an accurate dust temperature map of M33 by combining the AzTEC data with archival Spitzer images. A smooth temperature gradient was discovered, along with several other correlations between the physical properties of dust. We expect to compare our dust maps with SUBARU/Suprime-Cam imaging which resolves individual stars, to gain strong insights into the stellar sources which give rise to the dust temperatures observed in nearby galaxies.


T13
UH88/UKIRTÆüËÜ»þ´ÖTACÊó¹ð
  Àô±º ½¨¹Ô (¹ñΩŷʸÂæ)
UH88/UKIRTÆüËÜ»þ´Ö¤Î¥×¥í¥°¥é¥à¾®°Ñ°÷²ñ¤Î¤³¤Î°ìǯ¤Î³èÆ°¤Ë¤Ä¤¤¤ÆÊó¹ð¤¹¤ë¡£


T14
Stellar Populations of Lyman-alpha Emitters at z = 4.86: A comparison to z ~ 5 LBGs
  Yuma, Suraphong (µþÅÔÂç³Ø)
We investigate the stellar populations of 5 Lyman-alpha emitters (LAEs) at z = 4.86 in the area around GOODS-N field based on deep imaging data including V,NB711, Ic, z¡ì (Suraru/Suprime-cam), 3.6¦Ìm, and 4.5¦Ìm (Spitzer/IRAC). By SED fitting, we find that the stellar masses range from 10^8 to 10^{10} Msun. The resulting age, color excess, and star formation rate are respectively 7.4 ¡Ý 437 Myr, 0.1 ¡Ý 0.4 mag, and 55 ¡Ý 209 Msun/yr. We find that the rest-frame optical absolute magnitude is a good indicator of the derived stellar masses. A comparison of the stellar populations of the LAEs is made to those of LBGs at the same redshift in the same field. Deriving the stellar properties of the LBGs by fitting the same method ensures that effects of differing models do not interfere the comparison. Down to the same UV luminosity limit, the LAEs on average show less mass, less dust extinction, and lower star formation rates than LBGs, but the same age range. However, if the rest-frame UV or optical luminosity is fixed, these values are comparable to those of LBGs. We also examine the relations between the output properties from the SED fitting and the rest-frame Ly¦Á equivalent width.


T15
¤¹¤Ð¤ë˾±ó¶À¤òÍѤ¤¤¿COSMOSÅ·°è¤Ë¤ª¤±¤ë¹âÀÖÊýÊаÜÄã¸÷ÅÙ¥¯¥§¡¼¥µ¡¼Ãµºº
  ÃÓÅÄ ¹ÀÇ· (°¦É²Âç³Ø)
±óÊý¤Î¥¯¥§¡¼¥µ¡¼Ãµºº¤Ï¡¢µðÂç¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¤ÎÃÂÀ¸¡¦¿Ê²½¤Î²áÄø¤ò²ò ÌÀ¤¹¤ë¾å¤Ç¡¢ÂçÊѽÅÍפʴѬŪ¥¢¥×¥í¡¼¥Á¤Ç¤¢¤ë¡£ÂåɽŪ¤Ê±óÊý¤Î¥¯¥§¡¼ ¥µ¡¼Ãµºº¤È¤·¤Æ¡¢¥¹¥í¡¼¥ó¥Ç¥¸¥¿¥ë¥¹¥«¥¤¥µ¡¼¥Ù¥¤(SDSS) ¤¬¤¢¤ë¡£¤³¤Îõ ºº¤Ç¤ÏÀÖÊýÊаÜz~6¤Þ¤Ç¤Î¥¯¥§¡¼¥µ¡¼¤¬Â¿¤¯¸«¤Ä¤«¤Ã¤Æ¤­¤Æ¤¤¤ë¤¬¡¢¸Â³¦Åù µé¤¬Àõ¤¯Äã¸÷Å٤Υ¯¥§¡¼¥µ¡¼¤ÏÁ´¤¯ÆÀ¤é¤ì¤Æ¤¤¤Ê¤¤¡£¤·¤«¤·¤Ê¤¬¤é¡¢µðÂç ¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¤Î¿Ê²½¤Î²òÌÀ¤Ë¤Ï¡¢Äã¸÷ÅÙ¤«¤é¹â¸÷Å٤ˤ¤¤¿¤ë¹âÀÖÊýÊÐ°Ü ¥¯¥§¡¼¥µ¡¼¤Î¸÷Åٴؿô¤òÄ´¤Ù¤ë¤³¤È¤¬½ÅÍפǤ¢¤ë¡£¤½¤³¤ÇËܸ¦µæ¤Ç¤Ï¡¢Äã ¸÷ÅÙ¦¤Î¸÷Åٴؿô¤òºîÀ®¤¹¤ë¤¿¤á¤Ë¡¢COSMOS¤Î¥«¥¿¥í¥°¤òÍѤ¤¤Æ¡¢z = 3.7 ¤«¤éz = 5.5¤Þ¤ÇSDSS ¤è¤ê¤âÌó3Åù°Å¤¤¸÷Å٤ޤǤΥ¯¥§¡¼¥µ¡¼¥µ¥ó¥×¥ë¤ò¹½ ÃÛ¤·¤¿¡£¤¹¤Ð¤ë˾±ó¶À¤ÎSuprime-cam ¤Ç¼èÆÀ¤µ¤ì¤¿g¡Ç¤ª¤è¤Óz¡Ç¥Ð¥ó¥É¤Î Åùµé¾ðÊ󤫤ég¡Ç- r¡Ç vs. r¡Ç-i¡Ç¤Î2¿§¿Þ¤òÍѤ¤¤Æ¡¢z~4¤Î¥¯¥§¡¼¥µ¡¼¸õ ÊäÅ·ÂΤò31¸ÄÁª½Ð¤·¤¿¡£¤Þ¤¿¡¢ r¡Ç-i¡Ç vs. i¡Ç- z¡Ç¤Î£²¿§¿Þ¤è¤êz~5¤Î ¥¯¥§¡¼¥µ¡¼¸õÊäÅ·ÂΤò15¸ÄÁª½Ð¤·¤¿¡£¤³¤ì¤é¤Î¥µ¥ó¥×¥ë¤Ë´ð¤Å¤¤¤¿¸÷ÅÙ´Ø ¿ô¤òºîÀ®¤¹¤ë¤¿¤á¤Ë¤Ï¡¢¥³¥ó¥×¥ê¡¼¥È¥Í¥¹¤È¥³¥ó¥¿¥ß¥Í¡¼¥·¥ç¥ó¤ÎÊäÀµ¤ò ¹Ô¤¦É¬Íפ¬¤¢¤ë¡£¤½¤³¤Ç¡¢º£²ó¤Ï¥¯¥§¡¼¥µ¡¼¤Î¥â¥Ç¥ë¥¹¥Ú¥¯¥È¥ë¤òÍѤ¤¤¿ ¥â¥ó¥Æ¥«¥ë¥í¡¦¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤Ë¤è¤Ã¤Æ¥³¥ó¥×¥ê¡¼¥È¥Í¥¹¤ÎÊäÀµ¤ò¹Ô¤¤¡¢ »ÃÄêŪ¤Ê¸÷Åٴؿô¤òƳ½Ð¤·¤¿¡£º£²ó¤Îȯɽ¤Ç¤Ï¡¢1·î¤ËͽÄꤷ¤Æ¤¤¤ëFOCAS ¤òÍѤ¤¤¿²Ä»ëʬ¸÷´Ñ¬¤Ë¤è¤ëÀÖÊýÊаܬÄê¤È¥³¥ó¥¿¥ß¥Í¡¼¥·¥ç¥óɾ²Á¤Ë´Ø ¤¹¤ëŸ˾¤â¹ç¤ï¤»¡¢²æ¡¹¤Î¼è¤êÁȤߤˤĤ¤¤ÆÊó¹ð¤¹¤ë¡£


T16
Near-Infrared Spectroscopy of K-Selected Star-Forming Galaxies at z~2 with MOIRCS
  µÈÀî ÃÒ͵ (ÅìËÌÂç³Ø)
We present the results of near-infrared multi-object spectroscopic observations for 37 star-forming galaxies at z~2. The observations are conducted with Multi-Object InfraRed Camera and Spectrograph (MOIRCS) on the Subaru Telescope. The sample is drawn from the Ks-band selected catalog of the MOIRCS Deep Survey (MODS) in the GOODS-N region. About half of our samples are selected from the publicly available MIPS 24um-source catalog. H_alpha emission lines were detected from 23 galaxies, of which the median redshift is 2.12. We derived the star formation rates (SFRs) from extinction-corrected H_alpha luminosities and compared them with stellar masses estimated by SED fitting using multi-band photometric data covering across UV and near-infrared wavelengths. The comparison shows no correlation between SFR and stellar mass. Some galaxies with stellar mass smaller than ~10^10 Ms show SFR higher than ~100 Ms/yr. The specific SFRs (SSFRs) of these galaxies are remarkably high; galaxies which have SSFR higher than ~10^-8 yr^-1 are found in 8 of the present sample. The large SFR implies the possibility that the high SSFR galaxies significantly contribute to the cosmic SFR density of the universe at z~2. We found that the cosmic SFR density of these high SSFR galaxies is 0.091 (+0.019/-0.034) Ms/yr/Mpc^3. From the best-fit parameters of SED fitting for these high SSFR galaxies, we found that the average age of the stellar populations is younger than 100 Myr and that the average attenuation by dust is larger than E(B-V) ~ 0.3 mag. The metallicity of the high SSFR galaxies, which is estimated from N2 index, is larger than that expected from the mass-metallicity relation of UV-selected galaxies at z~2 by Erb et al. 2006.


T17
E+A¶ä²ÏSDSSJ160241.00+521426.9¤Î²Ä»ë¸÷¶õ´Öʬ²òʬ¸÷´Ñ¬
  ¾¾ÎÓ ÏÂÌé (µþÅÔÂç³Ø)
E+A¶ä²Ï¤È¤Ï¡¢¥¹¥Ú¥¯¥È¥ë¤ËÂʱ߶ä²Ï¤Î¤è¤¦¤Ê¶â°¤ÎµÛ¼ýÀþ¤È¡¢A·¿À±¤Î¤è¤¦¤Ê¥Ð¥ë¥Þ¡¼Àþ¤Î¶¯¤¤µÛ¼ý¤¬¸«¤é¤ì¤ë¶ä²Ï¤Î¤³¤È¤Ç¤¢¤ë¡£E+A¶ä²Ï¤Ï¥Ý¥¹¥È¥¹¥¿¡¼¥Ð¡¼¥¹¥È¶ä²Ï¤Ç¤Ï¤Ê¤¤¤«¤È¹Í¤¨¤é¤ì¤Æ¤¤¤ë¤¬¡¢¤½¤Î¿Ê²½¤Î¥×¥í¥»¥¹¤Ï̤¤À¤Ë¤è¤¯Ê¬¤«¤Ã¤Æ¤¤¤Ê¤¤¡£º£²ó¤Ï¶ä²Ï¿Ê²½¤Î°ìÃʳ¬¤Ç¤¢¤ëE+A¶ä²Ï¤¬¤É¤Î¤è¤¦¤Ë¿Ê²½¤·¤Æ¤¤¤ë¤«¤òÄ´¤Ù¤ë¤¿¤á¤Ë¡¢E+A¶ä²Ï¤ÎÁ°Å·ÂΤȻפï¤ì¤ëÅ·ÂÎJ160241.00+521426.9¤È¡¢¤³¤Î¶ä²Ï¤Î¶á¤¯¤Ë¸«¤¨¤ëȼ¶ä²Ï¤òUH88˾±ó¶À¤Ë¼è¤êÉÕ¤±¤¿µþÅÔ»°¼¡¸µÊ¬¸÷´ï2¹æ´ï¤ª¤è¤Ó¤¹¤Ð¤ë˾±ó¶À¤ÎFOCAS¤òÍѤ¤¤Æ¡¢²Ä»ë¸÷¶õ´Öʬ²òʬ¸÷´Ñ¬¤ò¹Ô¤Ã¤¿¡£ ¤½¤Î·ë²Ì¡¢¶ä²ÏÃæ¿´¤Ï¥Ý¥¹¥È¥¹¥¿¡¼¥Ð¡¼¥¹¥ÈÎΰè¤Ç¤¢¤ë°ìÊý¤Ç¡¢È¼¶ä²Ï¤Ë¶á¤¤¾ì½ê¤Ïº£¤Ç¤âÀ±·ÁÀ®Îΰè¤Ç¤¢¤ê¡¢°ì¤Ä¤Î¶ä²Ï¤Ë2¤Ä¤ÎÀ®Ê¬¤¬Ê̤ΰÌÃ֤Ǹ«¤Ä¤«¤ê¡¢¤Þ¤µ¤Ë ¿Ê²½Ãæ¤Î¶ä²Ï¤Ç¤¢¤ë»ö¤¬³Îǧ¤Ç¤­¤¿¡£¤Þ¤¿¡¢À±·ÁÀ®Îΰè¤Ç90km/s¤Î¶É½êŪ®Åپ줬´Ñ¬¤µ¤ì¤¿¡£¼ç¶ä²Ï¤Èȼ¶ä²Ï¤Î¸åÂà®ÅÙ¤òÄ´¤Ù¤ë¤È¡¢º¹¤¬100km/s¤Û¤É¤·¤«¤Ê¤¤¤³¤È¤«¤é¡¢¤³¤Î2¤Ä¤Î¶ä²Ï¤Ï¸«¤«¤±¾å¤À¤±¤Ç¤Ê¤¯±ü¹Ô¤­Êý¸þ¤Ë¤â¶á¤¤µ÷Î¥¤Ë¤¢¤ê¡¢¤³¤Î2¶ä²Ï´Ö¤ÇÁê¸ßºîÍѤ¬¤¢¤ë¤È¹Í¤¨¤é¤ì¤ë¡£¿åÁǥХë¥Þ¡¼µÛ¼ýÀþÅù²ÁÉý¤ÈSDSS¤Î¿§»Ø¿ô¤ò¥â¥Ç¥ë¤ÈÈæ³Ó¤¹¤ë¤È¡¢¥Ý¥¹¥È¥¹¥¿¡¼¥Ð¡¼¥¹¥ÈÎΰè¤ÎÀ±·ÁÀ®³èÆ°¤¬µÞ·ã¤Ë»ß¤Þ¤Ã¤¿¥â¥Ç¥ë¤¬´Ñ¬Î̤òºÇ¤âºÆ¸½¤¹¤ë¤³¤È¤¬Ê¬¤«¤Ã¤¿¡£¤³¤ÎE+A¶ä²Ï¤Ï¡¢È¼¶ä²Ï¤È¤ÎÁê¸ßºîÍѤˤè¤Ã¤ÆÆÍÇ¡À±·ÁÀ®¤ò»Ï¤á¤¿¤¬¡¢¶ä²ÏÃæ¿´Éô¤Ç¤Ï¤½¤Î¸åµÞ·ã¤ËÀ±·ÁÀ®¤ò»ß¤á¡¢¤µ¤é¤Ë»þ´Ö¤¬·Ð¤Á¸½ºß¤Î»Ñ¤Ë¤Ê¤Ã¤¿¤È¹Í¤¨¤é¤ì¤ë¡£


T18
²¬»³ ISLE ¤Ë¤è¤ë NGC 1068 ¤Î¶áÀÖ³°Àþʬ¸÷´Ñ¬
  ¶¶ËÜ Å¯Ìé (µþÅÔÂç³Ø)
¶áǯ¡¢Âç¼ÁÎ̶ä²Ï¤Î·ÁÀ®¤È¿Ê²½¤Ë¤Ä¤¤¤Æ¤Î¾ÜºÙ¤¬ÌÀ¤é¤«¤Ë ¤Ê¤ê¤Ä¤Ä¤¢¤ë¤¬¤½¤ÎÃæ¤Ç¡¢³èÆ°¶ä²Ï³Ë¤Ë¤è¤ëÀ±·ÁÀ®¤ÎÍÞÀ©¤Î ¸ú²Ì¤¬½ÅÍפÊÌò³ä¤òô¤Ã¤Æ¤¤¤ë¤³¤È¤¬¼¨º¶¤µ¤ì¤Æ¤¤¤ë¡£²æ¡¹¤Ï¤³¤Î "AGN ¥Õ¥£¡¼¥É¥Ð¥Ã¥¯" ¤Î¸½¾ì¤È¤·¤Æ¡¢ÅÅÇÈ ¥¸¥§¥Ã¥È¤Ë¤è¤Ã¤Æ°ú¤­µ¯¤³¤µ¤ì¤ë¾×·âÇȤËÃíÌܤ·¤¿¡£ ¤³¤Î¾×·âÇȤ¬¼þ°Ï¤Î¥¬¥¹¤ÎÅÅÎ¥¤È¤¤¤¦·Á¤Ç¥¨¥Í¥ë¥®¡¼¤ò À±´Öʪ¼Á¤ËÍ¿¤¨¤Æ¤¤¤ë¤«Èݤ«¤Ï¡¢¥¬¥¹¤ÎÅÅÎ¥¥á¥«¥Ë¥º¥à¤Î ¿ÇÃǤ˶¯ÎϤʰÒÎϤòȯ´ø¤¹¤ë [Fe II]1.257 ¤È [P II]1.188 ¤Îµ±Àþ¶¯ÅÙÈ椪¤è¤Ó¤½¤Î¶õ´ÖʬÉÛ¤òÄ´¤Ù¤ë¤³¤È¤¬Í­ÍѤǤ¢¤ë¡£ ¤½¤³¤Ç²æ¡¹¤Ï²¬»³¶áÀÖ³°»£Áü¡¦Ê¬¸÷ÁõÃÖ (ISLE) ¤Ë¤è¤ë Seyfert ¶ä²Ï NGC 1068 ¤Î J-band long slit ʬ¸÷´Ñ¬¤ò¹Ô¤Ã¤¿¡£ ¤½¤Î·ë²Ì¶õ´ÖŪ¤Ë¹­¤¬¤Ã¤¿ [Fe II]1.257 ¤È [P II] 1.188 µ±Àþ¤Î¸¡½Ð¤ËÀ®¸ù¤·¤¿¡£¹Ö±é¤Ç¤Ï¤³¤ì¤é¤Îµ±ÀþÈæ¤Î¶õ´ÖÊѲ½¤È ¾×·âÇȤδóÍ¿¤Ë¤Ä¤¤¤ÆµÄÏÀ¤¹¤ë¡£


T19
The Subaru Coronaphic Extreme AO Project
  Frantz Martinache & Olivier Guyon
In 2009 our group started the integration of the SCExAO project, a highly flexible, open platform for high contrast imaging at the highest angular resolution, to be inserted between the coronagraphic imaging camera HiCIAO and the 188-actuator AO system of Subaru. In its first version, SCExAO combines a MEMS-based wavefront control system feeding a high performance PIAA-based coronagraph, that suppresses the central obscuration and the thick spider vanes while preserving throughput and angular resolution. It also includes a coronagraphic low-order wavefront sensor, a non-redundant aperture mask and a visible imaging mode, all of them designed to take full advantage of the angular resolution (40 mas in the H-band) that an 8-meter telescope has to offer. SCExAO offers a chance to increase the coverage of the parameter space by SEEDS toward small angular separation, for follow-up observations of challenging SEEDS targets, and high contrast exploration of the habitable zone of nearby targets.