A Global View of the First Galaxies

Michele Trenti The University of Melbourne

Subaru Partnership Science & Instrumentation Workshop

NAOJ - 22-24 March, 2017

Star formation: now and then

★ Was star formation different?

today

~13.4 Gyr ago

Diverse probes of star formation physics in the young Universe

★Galaxies

★Quasars

★Gamma Ray Bursts (GRBs)

+ Theory/Modeling

Exploring the young Universe

The need for (and success) of space telescopes Redshift (z): >20 200 Present the Big Bang

NASA/ESA

Finding high redshift galaxies

★ Spectroscopy is challenging, but photometric redshift techniques from broad-band imaging have proven success

I arcmin

At the limit of Hubble

★ Discovery frontier at epoch of reionization, but sources only marginally resolved

A galaxy brighter than the Milky Way just ~650 Myr after Big Bang from multi-band imaging

Trenti et al. (2012); Calvi et al. (2016)

Hubble: Galaxies at cosmic dawn

Unprecedented z>6 samples from near-IR WFC3

- ★ Almost 1000
 dropout galaxies
 identified in the
 epoch of
 reionization
- ★ Strong redshift evolution

From light to star formation rate

★ Observed star formation rate drops at high z

From light to star formation rate

★ But steep luminosity function:

Star formation may be hidden in faint dwarfs!

Extending the frontier

★ JWST and WFIRST imaging will push exploration further

Ground-space synergy

Ground telescopes ideal for follow-up studies

- ★ Keck:
 Pioneering
 spectroscopy
 at z>7.5
- ★ But hard & limited to RARE bright (or lensed) galaxies

Ly α detection at z=7.64

The Subaru advantage

★ Large field of view ideal for systematic follow-up of next-generation surveys from space

Ground-space synergy for galaxy dustering studies

- ★ Small scales: First measure of galaxy clustering at z>7 (HST/CANDELS data)
- ★Very promising early results from HSC for large scales (see Harikane et al. 2016)

Barone-Nugent, Trenti et al. (2015)

High-z star formation from GRBs

- ★ Gamma Ray Bursts unique probes for
 - ★ High-z star formation
 - **★IGM** properties

- ★ Australia's SkyHopper mission
 12U CubeSat (PI Trenti; phaseA funded)
 - ★ Ultra-rapid near-IR follow-up of transients like GRB afterglows
 - ★ Exoplanets around brown dwarfs

High-z star formation from GRBs

★ Synergy with ground/JWST for spectroscopy

★ Strengthening Subaru's capabilities for Target of Opportunity Observations will be crucial for full exploitation of time-domain astronomy

Summary

- Hubble transformed our view of galaxy formation in the first Gyr
 - Characterization of luminosity function evolution (galaxy counts)
- Strong space-ground synergy to investigate galaxy properties (spectra, clustering)
- JWST/WFIRST + wide-field ground will be next giant leap forward
 - Multiple opportunities for collaborations on frontier science