

# Observational Studies of AGNs through East-Asia Collaborations

Tohru Nagao Ehime Univ., Japan



# C

#### My science interests



AGNs are powered by supermassive black holes (SMBHs). The mass of SMBHs reaches up to  $10^{10} M_{sun}$ , but nobody knows how and when SMBHs formed and evolved.







There is a tight correlation between the mass of SMBHs and their host galaxies, suggesting that there is an evolutionary link between SMBHs and galaxies (co-evolution).

Why? ...nobody knows.

Studies on the SMBH evolution is important, not only for AGNs/quasars but also for understanding the galaxy formation.



#### The luminosity-dependent density evolution?



Based on SDSS III (BOSS) data

More luminous SDSS quasars show the peak of their number density evolution at higher redshifts.

Luminosity-dependent density evolution of quasars, that may be consistent to the picture of the so-called "downsizing" evolution.

Caveat: the number density is unclear at higher z & lower luminosity. Downsizing really holds also at higher z?



#### Subaru Suprime-Cam



Suprime-Cam: Prime-focus wide-field camera

Field-of-view: 27'x34'

Good image quality: instrumental degradation of the image profile is negligible for the whole of the FoV.

Extremely powerful in searching for rare and faint objects such as high-z quasars.



#### Spectroscopy



FOCAS spectrum of a quasar at z=4.20 (i=23.5), with 0.5 hr exposures.

Spectra of 28 candidates of z~4 quasars (among 31 candidates in the COSMOS field) were obtained with Subaru/FOCAS.

Typical exposure time: 0.5-2 hours for each targets

23 targets showed meaningful spectra, and 8 quasars were identified as quasars at z~4 (the remaining objects were late-type stars).



#### Quasar luminosity function at z~4



COSMOS results (Ikeda, TN, +11)
Results in NDWFS+DLS

(Glikman et al. 2010, 2011)

Derived QLF (+ SDSS QLF) is consistent to double power-law shape.

~0.5 dex lower than the number density derived by another quasar survey at similar redshift...??



### Luminosity dependence of the number density



NOTE: quasars at z~5 were also searched in our COSMOS study but not identified (thus the upper limits are given at z~5).

Our results are consistent to the extrapolation of the downsizing evolutionary trend at lower z, while another survey show a different picture...??

More intensive surveys for high-z low-luminosity quasars are needed!!



Hiroyuki Ikeda

Ehime → ASIAA → NAOJ (HSC)



### HSC quasars at z > 6

- >~30 quasars at z~6-7 newly identified from HSC-SSP
- including a quasar at z~6.85 (the 3<sup>rd</sup> most distant quasar identified so far)
- mostly Subaru/FOCAS is used for spectroscopy (but also GTC/OSIRIS for some cases)
- > observations still on-going
- > z~4-5 also on-going (by Akiyama-san, He-san, Niida-san, etc...)





#### Dusty AGNs with HSC

#### >identifying red quasars with HSC & MIR all-sky data



z=1.5 quasar spectrum with various E(B-V)

Red WISE-detected quasars cannot be detected in SDSS

HSC is deep enough to detect them!



#### Results of HSC "Dusty Obscured Galaxies"





## For further understandings of AGN/SMBH...

- Characterization is needed (in addition to surveys)
- ➤ Need multi-wavelength approaches
  - ~ cross-match with wide-field data of radio, IR, Xray, ...
  - ~ sensitive follow-up with various instruments
- ➤ Need expertise for various specific analysis
  - ~ dynamical analysis for modeling the AGN outflow
  - ~ SED analysis (template, spectral fitting, ...)
  - ~ multi-wavelength experiences
  - ~ theoretical models (photoionization, N-body, MHD, ...)
- ➤ A solution: East-Asia AGN collaboration
  - ~ collaborating with neighboring friends
  - ~ series of workshops for fostering such collaborations

### East-Asia AGN Workshops

Next EAAGN workshop: 4-6 Dec. 2017 @ Kagoshima, JP



12-14 Sep. 2012 @ Jeju, Korea

20-23 Aug. 2013 @ Sapporo, Japan



14-16 Jul. 2015 @ Changchun, China

22-24 Sep. 2016 @ Seoul, Korea



- → Positive correlation between metallicity and outflow
- → Requiring more studies for high-z low-metallicity quasars
- → Joint Subaru/MOIRCS proposal in S17B

#### Summary



- ➤ Subaru is super-powerful for surveys
  - ~ Suprime-Cam → HSC (→ PFS & ULTIMATE)
  - ~ combination with multi-wavelength data also powerful

#### ➤ Need characterization

- ~ various follow-up (IFU, multi-wavelength, ...) needed
- ~ various expertise (analysis, modeling, ...) needed

#### >International collaboration is also super-powerful

- ~ current effort: "East-Asia AGN collaboration"
- ~ annual workshops as a "bottom-up" approach
- ~ continuous communication is crucial for outcomes
- ~ next step: expanding the efforts to the Subaru friends

