# The Co-evolution of AGNs and Galaxies

---- viewed from the 2D and mid-IR spectroscopy

Lei Hao

Shanghai Astronomical Observatory

#### Outline

- My personal science interests
  - 2D spectroscopy: (SDSS MaNGA, VENGA, CHILI)
    - AGN inflow and Galactic outflows
    - CHILI
    - Low Surface Brightness Galaxies
  - Infrared properties of AGNs and galaxies
  - AGNs at 2<z<4 in HETDEX
- Subaru Connections (me personally)
- Possible Collaborations in China (incomplete)
  - Chinese facilities

•2D Spectroscopy

- •AGN inflows and galactic outflows
- •CHIna Lijiang IFUs
- •Low Surface Brightness Galaxies

#### **VENGA** and MaNGA

#### VENGA

- VIRUS-P Exploration of Nearby Galaxies
- 30 disk galaxies March 2014
- Deep integration, wide FOV: 1.7'x1.7'

MaNGA

• IFU observations of ~10,000 galaxies, part of SDSS-IV

• FOV: <32"

2.7 m Harlan J. Smith Telescope



VIRUS-P









The residual velocity is  $\sim 20 \text{ km s}^{-1}$ The deprojected gas inflow velocity is  $\sim 32 \text{ km s}^{-1}$ The mass inflow rate at gas inflow region:

$$\dot{M}_{in} = 2 \pi n_e m_p f V_{in} r h \sim 1.1 \times 10^{-3} M_{\odot} \text{ yr}^{-1}$$

The mass accretion rate at the last stable orbit of the BH and the star formation rate in the NSC:

Luo et al. 2016

$$\dot{M} = \frac{L_{bol}}{c^2 n} \sim 1.4 \times 10^{-5} \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$$
  $M_{SR} \sim 7.94 \times 10^{-5} \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$ 

# Outflows in galaxies (with MaNGA)



Find sources with extended regions of broad [OIII] lines
Quantify the outflow frequencies; their strengths and other properties

# Outflows in galaxies (with MaNGA)



# Outflows in galaxies (with MaNGA)



# Outflows in galaxies (with VENGA)





# CHILI: CHIna Lijiang IFU

- HETDEX collaboration, copy of a VIRUS unit,
   ~2xVIRUS-P
- 494 fibers, each fiber 3.2 arcsec
  - VIRUS-P: 246 fibers, each 4.2"
  - MaNGA: 17x19-127 fibers, each 2"
- The total field of view is 71"x65"
  - Almost 100% filling factor
    - VIRUS-P: 100"x100", at 1/3 filling
    - MaNGA: <32", at 60% filling
- R=900 (~VIRUS-P) and  $R\sim2000$  (~MaNGA),
- Spectral coverage: 360-720nm
  - ~VIRUS-P, not as broad as MaNGA
- Red and blue are not observed simultaneously
  - VIRUS-P, Different from MaNGA



#### **HETDEX**: Hobby Eberly Telescope Dark Energy Experiment

#### HETDEX is:

- Upgrade of HET to have a new wide 22' field of view
- Deployment of the hugely replicated spectrograph, VIRUS, putting >33,000 fibers on sky, per exposure
- 3-5 year blind spectroscopic survey
- HETDEX will:
  - map a million LAEs  $(1.9 \le z \le 3.5)$  and a million [OII] emitters  $(z \le 0.5)$
  - measure expansion history to 1% precision at  $z\sim2.5$ 
    - determine if dark energy evolves, looking back 11 billion years
    - measure curvature of the universe to 0.1% (better than Planck)
- HETDEX is a unique blind spectroscopic survey with many other applications





# CHILI: CHIna Lijiang IFU

- HETDEX collaboration, copy of a VIRUS unit,
   ~2xVIRUS-P
- 494 fibers, each fiber 3.2 arcsec
  - VIRUS-P: 246 fibers, each 4.2"
  - MaNGA: 17x19-127 fibers, each 2"
- The total field of view is 71"x65"
  - Almost 100% filling factor
    - VIRUS-P: 100"x100", at 1/3 filling
    - MaNGA: <32", at 60% filling
- R=900 (~VIRUS-P) and  $R\sim2000$  (~MaNGA),
- Spectral coverage: 360-720nm
  - ~VIRUS-P, not as broad as MaNGA
- Red and blue are not observed simultaneously
  - VIRUS-P, Different from MaNGA



#### The characteristics of CHILI



- Big Field of View
  - microlense (~100% filling) : 71"x65"
    - SAURON: 33"x44", WiFeS: 38"x25"
  - 3 observations: >VIRUS-P by 33%
- Sensitive to low-surface brightness regions:
  - 100% filling+fat fibers:  $f = \Sigma \cdot A$
  - Avoid Dither
- Deep exposure



# Sciences Cases done by VIRUS-P



#### The characteristics of CHILI



- Big Field of View
  - microlense (~100% filling) : 71"x65"
    - SAURON: 33"x44", WiFeS: 38"x25"
  - 3 observations: >VIRUS-P by 33%
- Sensitive to low-surface brightness regions:
  - 100% filling+fat fibers:  $f = \Sigma \cdot A$
  - Avoid Dither
- Deep exposure



### **CHILI Sciences**

- Break radius of the disk galaxies
- Kinematics of bars and non-axisymmetric structures
- The <u>outer region</u> of the Elliptical galaxies: dark matter and the evolution (e.g., metallicity distribution)
- Bulge (including psudobulge) formation and AGN fueling and feedback at galactic scale
- <u>Large-scale outflow</u> (e.g. super winds)
- Detection of the "cold flows" of galaxies
- The <u>diffused ionized gas</u> of the edge-on galaxies



#### **CHILI Status and Timeline**

- Hardware ready by August, 2016
- Now in commissioning,
- Hopefully real observation in September, 2017





20mins on Crab Nebular, blue

# Low-surface Brightness galaxies

- $\mu_0 > 22.5 \text{mag/arcsec}^2$
- Are they a physically-disctinct class of galaxies
- Low starformation rate

#### A series of investigations:

- 1. Selecting: image decompositions
- 2. Using  $\Sigma_*$  to select LSBs using the MaNGA data
- 3. Structural properties of LSBs using the MaNGA data
- 4. Giant LSBs,
- 5. Environments of the LSBs



# Low-surface Brightness galaxies

- LSB identification:
  - Previous: assume exponential disk model for the whole galaxy, fails for galaxies with bulges.
  - $\mu_0(B) > 22.5 \text{ mag/arcsec}^2$ , where  $\mu_0(B)$  is from Simard et al. 2011.
    - $p_{ps}$ <0.4: (devecular + exponential) fit
    - $p_{ps} \ge 0.4$ : pure sersic fit





# Low-surface Brightness galaxies

• Giant Low-surface Brightness Galaxies (GLSBs)



HSC deep images of LSBs

Sathuram et al., in prep.

•Infrared studies of AGN and galaxies •AGNs at 2<z<4 (HETDEX)

# Infrared Spectra: Spitzer (and JWST)

- A sample (600 galaxies) with uniform mid-IR spectra (from Spitzer) and optical spectra (from SDSS)
  - AGN torus, Starbursts
  - Molecular emissions
    - Dust: silicates and PAHs
    - Gas:
      - H2 emission, other molecules
  - Atomic emissions of gas
    - [NeII], [NeIII], [SIII], [SIV], [NeV], [OIV], etc.
  - Diagnosite power

Lyu, Hao & Li, 2014; Xie, Hao, & Li, 2014; Xie, Li, Hao & Nikutta 2015; Xie et al., 2016



## A Tale of 3 galaxies

- No evidence of AGN in almost all bands, except maybe in hard X-ray.
- Extreme starburst:
  - Lyman Break Analog (Heckman, 2005)
  - Compact in UV
  - Strong outflows seen in UV absorption spectra

3C273

Silicate Profile

- WR signatures
- Silicate emission by starburst?
- Other unusual things:
  - Crystallized silicate
  - Strong [NII]/[SII]
- torus in forming?



#### **HETDEX**: Hobby Eberly Telescope Dark Energy Experiment

#### HETDEX is:

- Upgrade of HET to have a new wide 22' field of view
- Deployment of the hugely replicated spectrograph, VIRUS, putting >33,000 fibers on sky, per exposure
- 3-5 year blind spectroscopic survey
- HETDEX will:
  - map a million LAEs  $(1.9 \le z \le 3.5)$  and a million [OII] emitters  $(z \le 0.5)$
  - measure expansion history to 1% precision at  $z\sim2.5$ 
    - determine if dark energy evolves, looking back 11 billion years
    - measure curvature of the universe to 0.1% (better than Planck)
- HETDEX is a unique blind spectroscopic survey with many other applications



#### HETDEX

HSC images of HETDEX AGNs: host properties

- Largest lower-luminosity AGN sample at high-z
- >20,000 spectroscopically confirmed AGN at z~2-4, down to g~24mag



# Subaru Connections (me)

- HSC images:
  - LSBs
  - HETDEX AGNs
- IFU instrumentation developments:
  - CHILI
  - Possible developments on IFU instrumentation for the 4m telescopes in built
- Infrared properties of galaxies and AGNs

## Subaru Connections (China, incomplete)

- PFS:
  - 6 institutes in China (10s people)
- 1 µ m Subaru HSC survey of a JWST field: time-domain observations looking for earliest BHs and earliest SNs. (by Lifan Wang, see the poster in the meeting.)
- A wide community on AGN sciences
- Facilities in China

## Subaru Connections (China, incomplete)

- Facilities in China:
  - LAMOST (ref. the talk by Haining Li)
  - FAST
  - CSST (an imaging and slitless spectroscopic survey of 17500 square degrees)
  - Large Optical/Infrared Telescope (12m)



