HSC – Huntsman: A search for dwarf galaxies around nearby galaxies Masayuki Tanaka (NAOJ) Lee Spitler (Macquarie, AAO) #### LCDM has been extensively tested on large scales Tegmark et al 2004 ApJ ## Current small scale problems in ACDM - Core-cusp problem - Too steep dark matter density profiles of ΛCDM subhalos. - Missing satellites problem - Overabundance of ACDM subhalos. - ❖ Too-big-to-fail problem - Too concentrated most massive ACDM subhalos. #### Solutions: - Baryonic feedbacks? - Alternative DM models? - Incomplete observational data? - Satellite plane problem - Anisotropic distribution & coherent motion of dwarf satellites #### The missing satellite problem Moore et al. 1999 DM only simulation Sawala et al. 2014 DM + Baryon simulation ### But, HSC is not without problems... "Ultra Diffuse Galaxies" (van Dokkum et al. 2015 ApJ) # Reflecting telescopes leave artifacts on images that are difficult to remove 2nd mag star with GTC (Trujillo et all 2016, ApJ). Lots of interesting features on the large scale! ## Huntsman - Located at Siding Spring Observatory - Number of Canon lenses: 10 - Field of view: 2x3 deg^2 - Filters: g, r, Halpha - Pixel scale: 3"/pixel - 5-sigma sensitivity 3.5 nights - g = 32 ABmag/arcsec² (plus r-band) - Halpha = $2e22 \text{ W/m}^2/\text{arcsec}^2$ ~ $9e6 \text{ M}_{\text{sun}}/\text{yr/kpc}^2$ ## Stellar-HI assembly information Image credit: Fergus Longbottom. Optical: Huntsman HI: Westmeier, Braun & Koribalski, 2010 #### Science Goals #### Advantages of each instrument: - **HSC**: Sensitive to faint sources. High angular resolution. - **Huntsman**: Sensitive to diffuse sources. Can probe outer parts of the stellar halo of massive galaxies. #### Our science goals include: - constructing a complete sample of dwarf galaxies (both diffuse and compact) to address the missing satellite problem - explore outer stellar halos as well as globular clusters - cross-correlation between stars and gas - and more! MilkyWay (Licquia et al. 2015): MB= -20.8 +/- 0.4 mag Mv= -21.5 +/- 0.4 mag M*=6e+10Msun > NGC779 : d=21.6 Mpc (Tully-Fisher; Sorce+ 2014) Seeing: 0.5 arcsec in g-band, ~0.7 arcsec in I-band Exp. = 30min each B=11.7mag (MB=-20.1), V=11.1mag (MV=-20.7) M*=5.0e10 Msun, M_DM=1.9e+12 Msun, r200=248.6 kpc or 37.6 arcmin Not just missing satellite problems, but more... - Stellar tidal streams: a probe of galaxy-scale assembly (Duc et al. 2015, MNRAS) - Spatial alignment of dwarf galaxies: another potential challenge to LCDM (Ibata et al. 2013, Nature) - Gaps in stellar streams: potential probe of subhalo mass function (Carlberg 2012, ApJ) #### Main results – cumulative luminosity function Simulations are from Okamoto (2013, MNRAS, 428, 718). Tanaka et al in prep #### Main results – cumulative luminosity function Simulations are from Okamoto (2013, MNRAS, 428, 718). #### Summary Let me know if you are interested in joining the HSC-Huntsman project! #### **Hyper Suprime-Cam Subaru Strategic Program** Data Release 1 Home Survey Processing Release Data Database Data Access FAQ We peer deep into the Universe to unveil the nature of dark matter and dark energy. #### **Public Data Release 1** Welcome to the Hyper Suprime-Cam Subaru Strategic Program Data Release Site! The first public release of HSC-SSP occurred on 28 February 2017. The release includes over 100 square degrees of deep multi-color data served through dedicated databases and user interfaces. The figures below shows the area covered in this release and the table gives an overview of the data in the three survey layers. Refer to **our survey website** for details of the survey design. #### First Data Release of the Hyper Suprime-Cam Subaru Strategic Program Hiroaki Aihara¹, Robert Armstrong², Steven Bickerton³, James Bosch², Jean Coupon⁴, Hisanori Furusawa⁵, Yusuke Hayashi⁵, Hiroyuki Ikeda⁵, Yukiko Kamata⁵, Hiroshi Karoji^{6,2}, Satoshi Kawanomoto⁵, Michitaro Koike⁵, Yutaka Komiyama^{5,7}, Dustin Lang^{8,9}, Robert H. Lupton², Sogo Mineo⁵, Hironao Miyatake^{10,11}, Satoshi Miyazaki^{5,7}, Tomoki Morokuma^{12,11}, Yoshiyuki Obuchi⁵, Yukie Oishi⁵, Yuki Okura^{13,14}, Paul A. Price², Tadafumi Takata^{5,7}, Manobu M. Tanaka¹⁵, Masayuki Tanaka^{5,*}, Yoko Tanaka¹⁶, Tomohisa Uchida¹⁵, Fumihiro Uraguchi⁵, Yousuke Utsumi¹⁷, Shiang-Yu Wang¹⁸, Yoshihiko Yamada⁵, Hitomi Yamanoi⁵, Naoki Yasuda¹¹, Nobuo Arimoto^{16,7}, Masashi Chiba¹⁹, Francois Finet¹⁶, Hiroki Fujimori²⁰, Seiji Fujimoto²¹, Junko Furusawa⁵, Tomotsugu Goto²², Andy Goulding², James E. Gunn², Yuichi Harikane^{21,23}, Takashi Hattori¹⁶, Masao Hayashi⁵, Krzysztof G. Hełminiak²⁴, Ryo Higuchi²¹, Chiaki Hikage¹¹, Paul T.P. Ho^{18,25}, Bau-Ching Hsieh¹⁸, Kuiyun Huang²⁶, Song Huang^{27,11}, Masatoshi Imanishi^{5,7}, Ikuru Iwata^{16,7}, Anton T. Jaelani¹⁹, Hung-Yu Jian¹⁸, Nobunari Kashikawa^{5,7}, Nobuhiko Katayama¹¹, Takashi Kojima^{21,23}, Akira Konno²¹, Shintaro Koshida¹⁶, Alexie Leauthaud²⁷, C.-H. Lee¹⁶, Lihwai Lin¹⁸, Yen-Ting Lin¹⁸, Rachel Mandelbaum²⁸, Yoshiki Matsuoka^{5,29}, Elinor Medezinski², Shoken Miyama^{17,30}, Rieko Momose²², Anupreeta More¹¹, Surhud More¹¹, Shiro Mukae²¹, Ryoma Murata^{11,1}, Hitoshi Muravama^{11,31,32}, Tohru Nagao²⁹, Fumiaki Nakata¹⁶, Mana Niida³³, Hiroko Niikura^{1,11}, Atsushi J. Nishizawa³⁴, Masamune Oguri^{35,11,1}, Nobuhiro Okabe^{36,17}, Yoshiaki Ono²¹, Masato Onodera¹⁶, Masafusa Onoue^{5,7}, Masami Ouchi^{21,11}, Tae-Soo Pyo¹⁶, Takatoshi Shibuya²¹, Kazuhiro Shimasaku²³, Melanie Simet³⁷, Joshua Speagle^{38,11}, David N. Spergel^{2,39}, Michael A. Strauss², Yuma Sugahara^{21,23}, Naoshi Sugiyama^{40,11}, Yasushi Suto^{1,35}, Nao Suzuki11, Philip J. Tait16, Masahiro Takada11, Tsuyoshi Terai16, Yoshiki Toba18, Edwin L. Turner211,1, Hisakazu Uchiyama7, Keiichi Umetsu18, Yuji Urata⁴¹, Tomonori Usuda^{5,7}, Sherry Yeh¹⁶, Suraphong Yuma⁴², Data release paper with more than 100 authors! arXiv: 1702.08449 ¹Department of Physics, University of Tokyo, Tokyo 113-0033, Japan ²Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 Orbital Insight, 100 W. Evelyn Ave. Mountain View, CA 94041 ⁴ Department of Astronomy, University of Geneva, ch. dÉcogia 16, 1290 Versoix, Switzerland ⁵ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan ⁶ National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo, JAPAN ⁷Department of Astronomy, School of Science, Graduate University for Advanced Studies (SOKENDAI), 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan