Galactic Archaeology: The formation and evolution of the Milky Way using large observational surveys

Sanjib Sharma (University of Sydney)

Large observational surveys of the Milky Way.

- Astrometric:
 - I,b, μ_I,μ_b. Angular position and angular velocity/proper motion
 - UCAC4, PPMXL, HIPPARCOS (GAIA)
- Photometric:
 - B,V,u,g,r,i , Color and magnitude of stars
 - **d**,**T**_{eff},
 - 2MASS, SDSS, APASS, SkyMapper, (LSST)
- Spectroscopic:
 - V_r, radial velocity, d, T_{eff}, logg, [Fe/H], [X/Fe], (mass, age)
 - APOGEE, Gaia-ESO, GALAH, (RAVE, SEGUE, LAMOST) [4MOST]
- Asteroseismology:
 - Kepler mission, K2, TESS

Chemical abundance and age is important? Life long tags

 We only have the present snapshot, cannot go back in time to unravel the formation history.

- This is what makes it challenging.
- High resolution spectra crucial.

Machinery to interpret observations

- Forward modelling. From models to data.
- N body simulations
- Equilibrium models
- $f(x,v|\tau)$ to $f(J|\tau)$ or f(J|Z) (Binney 2010-2015)
 - J(x,v| Φ) constants of motion
 - Reduce problem from 6d to 3d
 - Pseudo isothermal DF
 - Extended distribution function (Sanders & Binney 2015)

Galaxia: galaxia.sourceforge.net

 A framework to compare theoretical models of our Galaxy wit observations.

Kinematic analysis using RAVE and GCS

GCS: A color magnitude limited sample of stars with (x).
 Very local 120 pc. (about 5000 stars)

RAVE a spectroscopic survey of about 500,000 stars with accurate, (l,b,y). 1- 2kpc.p($\theta \mid l,b,y_{os}$)

RAVE-GAUSS

- Marginalised posterior distribution of model parameters.
- The anticorrelation of R_o^{thin} and V_⊙ sun can be seen
- V_☉ and v_c
 affected by α_z

Sharma et al. 2014

Best fit parameters for the Shu model

Model	RAVE SHU	RAVE SHU	GCS SHU	
U_{\odot}	$11.2^{+0.13}_{-0.13}$	$10.92^{+0.13}_{-0.14}$	$10.16^{+0.39}_{-0.4}$	α, free makes v
V_{\odot}	$9.71^{+0.12}_{-0.11}$	$7.53^{+0.16}_{-0.16}$	$9.81^{+0.28}_{-0.28}$	go up.
W_{\odot}	$7.536^{+0.085}_{-0.086}$	$7.542^{+0.089}_{-0.093}$	$7.13^{+0.18}_{-0.19}$	- go up.
$\sigma_R^{ m thin}$	$42.37^{+0.61}_{-0.66}$	$39.78^{+0.81}_{-0.73}$	$39.99^{+0.91}_{-0.91}$	232.8+7.53=240.33
$\sigma_z^{ m thin}$	$26.85^{+0.85}_{-0.92}$	$24.7^{+0.66}_{-0.66}$	$23.63^{+0.85}_{-0.8}$	km/s.
σ^{thick}	$38.84^{+1.2}_{-0.96}$	$42.31^{+1}_{-0.9}$	$45.9^{+1.8}_{-1.8}$	GCS and RAVE
$\sigma_z^{\mathrm{thick}}$	$29.15^{+0.87}_{-0.79}$	$34.66^{+0.61}_{-0.58}$	$32.6^{+2.3}_{-2.2}$	also match,
β_R	$0.236^{+0.011}_{-0.011}$	$0.198^{+0.014}_{-0.014}$	$0.237^{+0.013}_{-0.013}$	σ_{R} similar for thin
β_z	$0.398^{+0.03}_{-0.029}$	$0.328^{+0.027}_{-0.024}$	$0.366^{+0.021}_{-0.021}$	and thick
$1/R_{\sigma}^{\rm thin}$	$0.0673^{+0.0028}_{-0.0028}$	$0.0722^{+0.0035}_{-0.0032}$	0.073	
$1/R_{\sigma}^{\mathrm{thick}}$	$0.1555^{+0.0046}_{-0.0064}$	$0.1335^{+0.0046}_{-0.0056}$	0.132	Sharma et al. 2014
Θ_0	$212.6^{+1.4}_{-1.3}$	$232.8^{+1.7}_{-1.6}$	232	
R_0	8	8	8	Quantities in
α_z	0	$0.048^{+0.0019}_{-0.0018}$	0.0471	magenta were
α_R	0	0	0	kept fixed during
$\chi^2_{ m red}$ RAVE	1.52	1.43	1.80	fitting. Units are in km/s and kpc
$\chi^2_{ m red}$ RAVE $\chi^2_{ m red}$ GCS	5.15	5.57	3.86	

Asteroseismology

KEPLER

- Continuous monitoring of 150,000 stars.
- 8 deg radius

Galactic archeology with Asteroseismology

- Vmax(g) then M(dnu,numax)
- Gives mass and radius and potentially age. Age crucial for GA.
- Kepler, K2, CoRoT, TESS.
- Kepler did not have well defined selection function.

Sharma et al. 2016 (AN)

$$\left(rac{
ho}{
ho_{\odot}}
ight)\simeq \left(rac{\langle\Delta
u_{nl}
angle}{\langle\Delta
u_{nl}
angle_{\odot}}
ight)^2,$$

$$\left(rac{g}{\mathrm{g}_{\odot}}
ight)\simeq\left(rac{
u_{\mathrm{max}}}{
u_{\mathrm{max},\odot}}
ight)\left(rac{T_{\mathrm{eff}}}{T_{\mathrm{eff},\odot}}
ight)^{0.5}$$

$$\left(rac{R}{
m R_{\odot}}
ight)\simeq \left(rac{
u_{
m max}}{
u_{
m max,\odot}}
ight)\left(rac{\langle\Delta
u_{nl}
angle}{\langle\Delta
u_{nl}
angle_{\odot}}
ight)^{-2}\left(rac{T_{
m eff}}{T_{
m eff,\odot}}
ight)^{0.5}$$

$$\left(\frac{M}{\mathrm{M}_{\odot}}\right) \simeq \left(\frac{\nu_{\mathrm{max}}}{\nu_{\mathrm{max},\odot}}\right)^{3} \left(\frac{\langle \Delta \nu_{nl} \rangle}{\langle \Delta \nu_{nl} \rangle_{\odot}}\right)^{-4} \left(\frac{T_{\mathrm{eff}}}{T_{\mathrm{eff},\odot}}\right)^{1.5}$$

Red giants from Kepler 10000 stars. Sharma et al. 2016 (ApJ)

K2 mission

- In May 2013, of the four reaction wheels, two stopped working.
- June 2014 Kepler repurposed as K2 mission.
 - per campaign: 3 months, 20,000 targets.

K2GAP

www.physics.usyd.edu.au/k2gap

- Galactic archaeology program with K2.
 - Dennis Stello (PI), Sanjib and Asteroseismic commun
- Very well defined selection function, avoiding SF mistake made in KEPLER mission.
 - (J-K)>0.5 upto $V \sim 14$ or 15
- 40% of targets allocated via this program.
- Among the top two programs.

K2-HERMES program (59 nights)

- Program to follow up K2 targets with HERMES at AAT.
 - Precise abundaces, accurate asteroseismic information.
 - Goldmine for galactic archaeology.
- 10<V<13, 13<V<15,
- **60,000** stars.
- Priority to K2 targets
- SF and Completeness:
 - 10<V<13
 - (13<V<15)&((J-K)>0.5)

TESS HERMES program

- Launch date June 2018
- Full frame images for
- CVZ 12 degree radius
- Oscillations in RG should be detectable till I<12 (V<13)
- 17 nights at AAT, (10<V<13)

Spectroscopic determination of Mass

- Martig et al. 2016, Ness et al. 2016
- 14 % accuracy

Subaru and Galactic Archaeology

- With PFS, low-res spectra can we get C/N or other mass markers.
- Strength is fainter stars, wide area.
- Milky Way Halo ideal candidate.

Structures as fossils of accretion events (3d space)

Structures are related to accretion history

Kafle et al 2013,2014

- Kinematic properties of halo using SEGUE BHB stars
 - (r < 15 kpc, |z| > 4 kpc).
- Dip in anisotropy profile.
- Rotation depends on metallicity.

Density of halo stars (*Galaxia*) preliminary

Subaru and Galactic Archaeology

- With PFS, low-res spectra can we get C/N or other mass markers.
- Strength is fainter stars, wide area.
- Milky Way Halo ideal candidate.