

# Subaru-Australian collaboration on Technologies for Habitable Planet Spectroscopy

Mike Ireland

Plus many others: thanks to Barnaby Norris and Nemanja Jovanovic for slides. Thanks to Yosuke Minowa for keeping AO188 going so well, and Takayuki Kotani's introduction.



# My Background and Interests

- Much of my background is in long-baseline optical interferometry (PAVO@CHARA, and the Planet Formation Imager).
- I spend about half my time on instrumentation, including novel data reduction.
- Currently Co-project scientist for GHOST (Gemini Echelle spectrograph), instrument scientist for Veloce (new AAT echelle spectrograph)
- I have some continued interest in young stars and AGB stars, but my primary future research directions are answering: How do planets form? and Where are the nearby habitable planets?







### Example Science: LkCa15

- Original publication (Kraus and Ireland 2012): all Non-Redundnt Aperture-Masking...
- Image-reconstruction using MACIM (Ireland et al 2008), plus lots of model fitting.

The total luminosity (1-3 x  $10^{-3}$  L<sub>sun</sub>) inconsistent with non-planet explanations, but scattering not completely ruled out with exotic dust/geometry Thalmann (2016)

combinations.

Subaru/SEEDS and new Sphere data complicate the picture (no working models): planet formation is messy!



# ExAO Background



- Subaru has a history of pioneering Adaptive Optics development.
- Major recent survey has been SEEDS: Strategic explorations of exoplanets and disks with the Subaru Telescope
- SEEDS has >40 refereed papers, many with 100+ citations.

Australia hasn't been part of SEEDS in its first 5 years, but is part of SCExAO, which

is the next generation instrument...



HD 135344B (Muto+ 2012)





### Coronagraphy

- For perfect input wavefronts: a solved problem in principle at ~10<sup>8</sup> contrast, even for GMT (Guyon 2014).
- Practical achromatic phasemasks (below) being produced.









0.98



### **Wavefront Control**

Existing 8m ExAO systems (SPHERE, GPI) are single-conjugate and have wavefront sensors a factor of 10 less sensitive than the theoretical limits (Guyon 2005).

GPUs and eAPD arrays are 2 technologies that solve this.

Raw theoretical contrasts at R~5 are better than 10<sup>-6</sup>.

Can be improved further with multiwavelength WFS and predictive AO: software research topics.





### Subaru – SCExAO



Vampires polarimetry and aperture-masking (Sydney Uni)

Polarimetry

High-contrast

Limited to bright stars (but R~11.5 OK)

Mini-IFU injection into RHEA (ANU + Macquarie Uni)



March 2017 AO performance

- The largest stars are now directly resolvable without deconvolution or post-processing image shifts.
- RHEA alignment camera images not only show resolve stars, but an asymmetry in R Leonis.
- Strehl is 33% limited by tip/tilt and low-order modes. Competitive with ESO's sphere, but more upgradeable.









### **VAMPIRES**

An insturment to image the inner regions of protoplanetary disks and mass-loss shells

- Directly images the inner 10's of AU of disks and shells in scattered light.
- Ultra-high resolutions (~10 mas) and contrasts enabled by two key techniques:
  - 1. Aperture masking interferometry
    Converts Subaru's 8m pupil into array of subpupils, producing well-calibrated interference pattern.
  - 2. Differential polarimetry
    Images polarised light scattered by dust in
    disk. Fast-switching triple-layered calibration.

Integrated into SCExAO visible-light channel; VAMPIRES can conduct visible observations *simultaneously* with HICIAO, etc. IR observations

[University of Sydney & SCEXAO/Subaru]







### Example VAMPIRES science

### Circumstellar dust around Red Supergiant µ Cephei

Model-fitting reveals extended, asymmetric dust shell, originating within the outer stellar atmosphere, without a visible cavity. Such low-altitude dust (likely Al<sub>2</sub>O<sub>3</sub>) important for unexplained extension of RSG atmospheres.

Inner radius: 9.3  $\pm$  0.2 mas (which is roughly  $R_{\text{star}}$ )

Scattered-light fraction:  $0.081 \pm 0.002$ 

PA of major axis: 28  $\pm$  3.7  $^{\circ}$  • Aspect ratio: 1.24  $\pm$  0.03

**Left:** model image, shown in polarized intensity. **Middle:** model image show in four polarisations. **Right:** Model image (intensity), shown with wide field MIR image (from de Wit et al. 2008 – green box shows relative scales. Axis of extension in MIR image aligns with the close-in VAMPIRES image.

C) Polarised Intensity

0.28

0.21

0.14

-40

-40

-20

0.07

0.00







RHEA Injection Unit Image-Plane View: 3x3 fiber array can be positioned anywhere in the field of view.

| Parameter             | Value                      |
|-----------------------|----------------------------|
| Fiber Separation      | 0.016"<br>(new: 0.024")    |
| Fiber acceptance FWHM | ~0.01"                     |
| Wavelength<br>Range   | 600-800nm                  |
| Positioning accuracy  | 0.003" (OL)<br>0.001" (CL) |



Reference multi-mode fiber is in the corner of the field of view.



# RHEA Spectrograph

| Parameter                    | Value                   |
|------------------------------|-------------------------|
| Spectral Resolution          | 60,000                  |
| Peak Efficiency (expected)   | ~30%                    |
| Slit Length                  | 2.75mm<br>(11 x 0.25mm) |
| De-magnified slit length     | 0.25mm                  |
| Pupil Diameter               | 11mm                    |
| Baseplate Temp.<br>Stability | 0.001K                  |

Trius SX-694





(Visible RHEA)

### WATER IN EMISSION IN THE INFRARED SPACE OBSERVATORY SPECTRUM OF THE EARLY M SUPERGIANT STAR $\mu$ CEPHEI<sup>1</sup>

### Takashi Tsuji

Institute of Astronomy, University of Tokyo, Mitaka, Tokyo, 181-0015, Japan Received 2000 May 17; accepted 2000 July 26; published 2000 August 31

### RHEA Science

### Cases

- Velocity-resolved shells of giant stars
- Velocity-resolved convection in giant stars
- Detecting accreting protoplanets and velocity-resolved scattered light protoplanetary disks (stretch goal)

Assuming successful commissioning, my team and I are happy to help SCExAO observers in future semesters!







# Preliminary Results



- High SNR spectra can be extracted.
- When tip/tilt and low order modes corrected, ~20 milli-arcsec scanning FWHM as expected.
- 2<sup>nd</sup>-generation fiber cable installed late-last year (fixes modal noise as reported in SPIE)
- R Leo results (9 days ago) subtle, but there is signficantly more spectral variability near the star edge.







# Future Adaptive Optics (Siren)

- Habitable planets around nearby, cool (~3500K) stars have an in-principle detectable reflected light spectrum: especially with ~30m telescopes
- Key technologies are maturing now (e.g. fast photon counting detectors).
- Doppler-shifted reflected light not only tells us about the planetary albedo (cloud cover) but also has the potential for bio-signatures. "Are we alone?" is answerable.









### Conclusions

- Bright time on Subaru will be used for Extreme-AO science for some time to come.
- Continued technology development, (including Australian collaboration) will keep Subaru internationally competitive.
- Opportunities for significant new scientific surveys in coming years (e.g. post-SEEDS) to put both our communities at the forefront in the ELT era.
- Much more limited by seeing conditions than other science: some queue scheduling or backup poor seeing science would be useful.