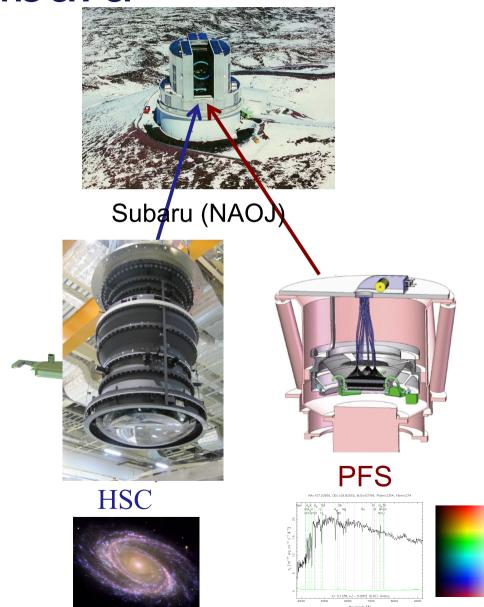
Subaru large surveys

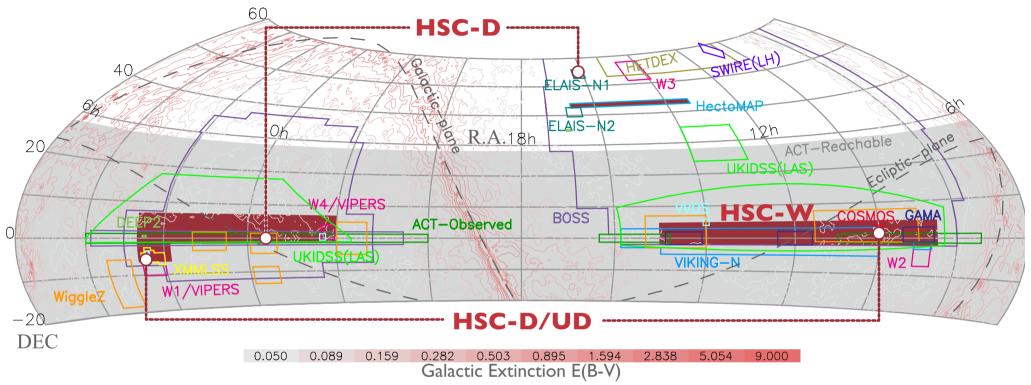

Masahiro Takada (Kavli IPMU) on behalf of HSC and PFS collaborations

Imaging and spectroscopic surveys with Subaru

- Build wide-field camera (Hyper Suprime-Cam) and wide-field multiobject spectrograph (Prime Focus Spectrograph) for the Subaru Telescope (8.2m)
- HSC imaging survey since 2014
- PFS survey will start around 2020
- Keep the Subaru Telescope a world-leading telescope in the TMT era
- Precise images of 1B galaxies
- Measure distances of ~4M galaxies

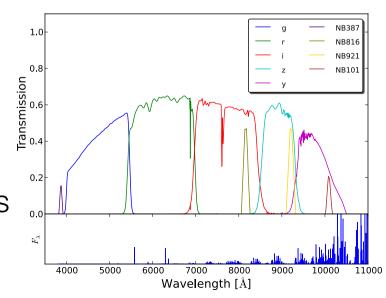
HSC SSP survey since 2014

PI: S. Miyazaki (NAOJ)



International collaboration (Japan, Taiwan, Princeton U.)
Subaru 300 nights already granted

HSC SSP Survey Fields



Three-layer survey

Wide:1400 sq. deg, grizy (i~26)

- Deep: 26 sq. deg, grizy (i~27)+3NBs

- UltraDeep: 3.5 sq. deg., grizy (i~28)+3NBs

HSC collaboration meeting@IPMU, Aug 2016 ~300 Cols

First Data Release (DR1) of HSC SSP 28 Feb, 2017

~60 Subaru nights, ~100 sq. deg., ~108 objects ~10yrs SDSS A series of science papers will come out this April

News Y About Y Projects Access/Visiting Y Astronomical Information Gallery

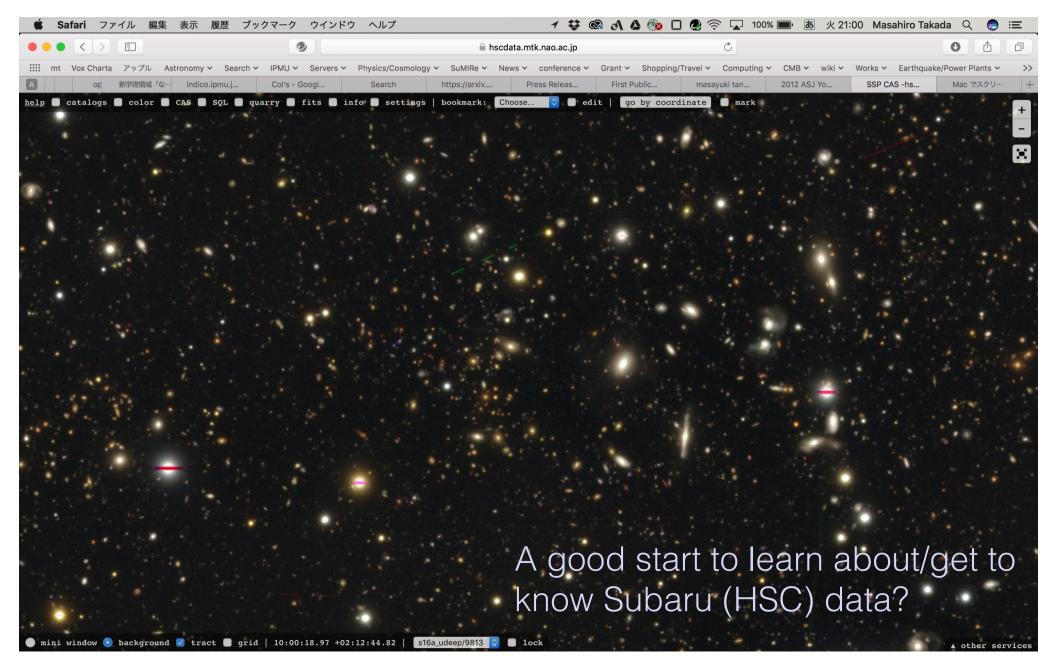
Q Search

First Public Data Release by the Hyper Suprime-Cam Subaru Strategic Program

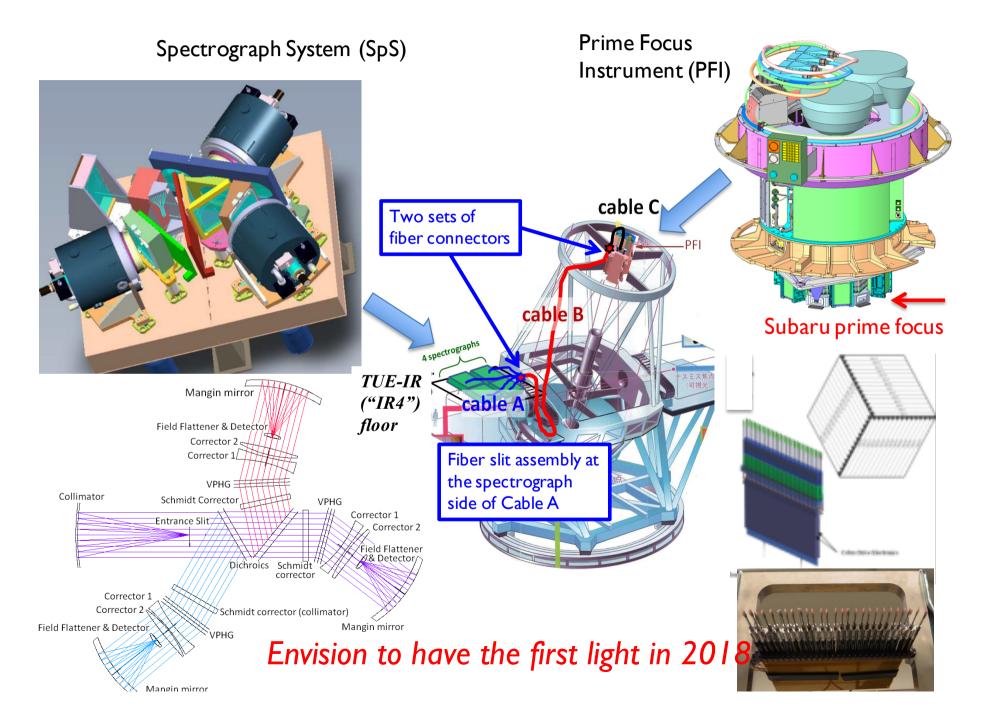
February 28, 2017 | Topics

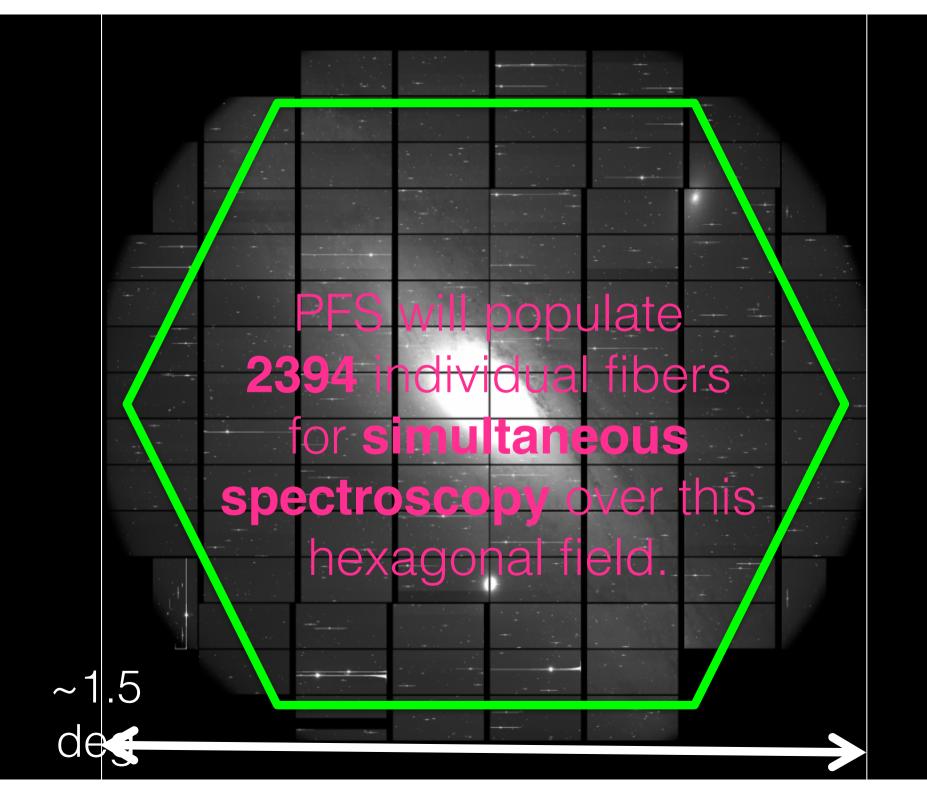
Publ. Astron. Soc. Japan (2014) 00(0), 1 doi: 10.1093/pasj/xxx

First Data Release of the Hyper Suprime-Cam Subaru Strategic Program


Masayuki Tanaka (NAOJ)

Hiroaki Aihara¹, Robert Armstrong², Steven Bickerton³, James Bosch², Jean Coupon⁴, Hisanori Furusawa⁵, Yusuke Hayashi⁵, Hiroyuki Ikeda⁵, Yukiko Kamata⁵, Hiroshi Karoji^{6,2}, Satoshi Kawanomoto⁵, Michitaro Koike⁵, Yutaka Komiyama^{5,7}, Robert H. Lupton², Sogo Mineo⁵, Hironao Miyatake^{8,9}, Satoshi Miyazaki^{5,7}, Tomoki Morokuma^{10,9}, Yoshiyuki Obuchi⁵, Yukie Oishi⁵, Yuki Okura^{11,12}, Paul A. Price², Tadafumi Takata^{5,7}, Manobu M. Tanaka¹³, Masayuki Tanaka^{5,*}, Yoko Tanaka¹⁴, Tomohisa Uchida¹³, Fumihiro Uraguchi⁵, Yousuke Utsumi¹⁵, Shiang-Yu Wang¹⁶, Yoshihiko Yamada⁵, Hitomi Yamanoi⁵, Naoki Yasuda⁹, Nobuo Arimoto^{14,7}, Masashi Chiba¹⁷, Francois Finet¹⁴, Hiroki Fujimori¹⁸, Seiji Fujimoto¹⁹, Junko Furusawa⁵, Tomotsugu Goto²⁰, Andy Goulding², James E. Gunn², Yuichi Harikane^{19,21}, Takashi Hattori¹⁴, Masao Hayashi⁵, Krzysztof G. Hełminiak²², Ryo Higuchi¹⁹, Chiaki Hikage⁹, Paul T.P. Ho^{16,23}, Bau-Ching Hsieh¹⁶, Kuiyun Huang²⁴, Song Huang^{25,9}, Masatoshi Imanishi^{5,7}, Ikuru Iwata^{14,7}, Anton T. Jaelani¹⁷, Hung-Yu Jian¹⁶, Nobunari Kashikawa^{5,7}, Nobuhiko Katayama⁹, Takashi Kojima^{19,21}, Akira Konno¹⁹, Shintaro Koshida¹⁴. Alexie Leauthaud²⁵. C.-H. Lee¹⁴. Lihwai Lin¹⁶. Yen-Ting Lin¹⁶.


Release	Date	Layer	N	Area	Files	N	Version
			filter	(deg^2)	(TBytes)	object	hscPipe
Public Data Release 1	2017-02-28	UltraDeep	7	4	8.6	3,225,285	4.0.1
		Deep	7	26	16.6	15,959,257	4.0.1
		Wide	5	108 (100)	57.1	52,658,163	4.0.1
S14A0	2014-09-04	UltraDeep	5	2	2.2	880,792	2.12.4a
		Wide	2	24	2.6	10,548,142	2.12.4a
S14A0b	2015-02-10	UltraDeep	5	4	6.4	2,183,707	2.12.4d
		Wide	5	94 (23)	18.6	63,954,672	3.4.1
S15A	2015-09-01	UltraDeep	6	4	7.2	2,973,579	3.8.5
		Deep	6	24	17.7	14,747,568	3.8.5
		Wide	5	203 (82)	40.7	64,073,662	3.8.5
S15B	2016-01-29	UltraDeep	7	4	8.6	3,225,285	4.0.1
		Deep	7	26	16.6	15,959,257	4.0.1
		Wide	5	413 (111)	145.2	157,423,778	4.0.1
S16A	2016-08-04	UltraDeep	7	4	7.5	3,208,918	4.0.2
		Deep	7	28	8.0	16,269,129	4.0.2
		Wide	5	456 (178)	245.0	183,391,488	4.0.2


Table 3. Summary of this public release and previous internal data releases. The area is estimated by using HEALPix index system ($N_{side}=2^{11}$) and mosaicking information from the pipeline processing. The 5th column gives the survey area in square degrees. The full-color full-depth area in the Wide survey is shown in the parenthesis. Only the full-color full-depth Wide area is included in this release, but the area in the brackets in the top row is smaller than the total area. This is primarily because the release area is determined on a patch by patch basis, but a fraction of the area in the patches on the field borders actually do not reach the full depth. The 7th column shows the number of objects; since the deblender became functional in the S15A release, the numbers for the subsequent releases are for primary objects (detect_is_primary=True; see Section 4.3).


http://hsc.mtk.nao.ac.jp https://hsc-release.mtk.nao.ac.jp

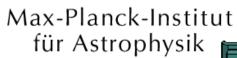
Subaru Prime Focus Spectrograph (PFS)

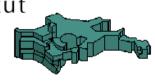
PFS Collaboration

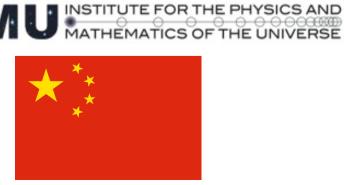
N. Tamura (PM)

H. Murayama (PI)

Kavli IPMU is leading this international collaboration




Caltech



PFS collaboration meeting @JHU, Dec 2016

PFS Science Team Organization

Naoyuki Tamura [Kavli IPMU, Project Manager]

Masahiro Takada [Kavli IPMU]

Hitoshi Murayama [IPMU director, PFS PI]

Richard Ellis [UCL/ESO]

Science working group co-chairs

Cosmology

(MPA/IPMU)

Galaxy/AG N evolution

Jenny Greene (Princeton)

Galactic Archaeology

PFS Science White Paper

Takada, Ellis et al. 2014

Publ. Astron. Soc. Jpn (2014) 66 (1), R1 (1–51) doi: 10.1093/pasj/pst019 Advance Access Publication Date: 2014 February 17

R1-1

Review

Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph

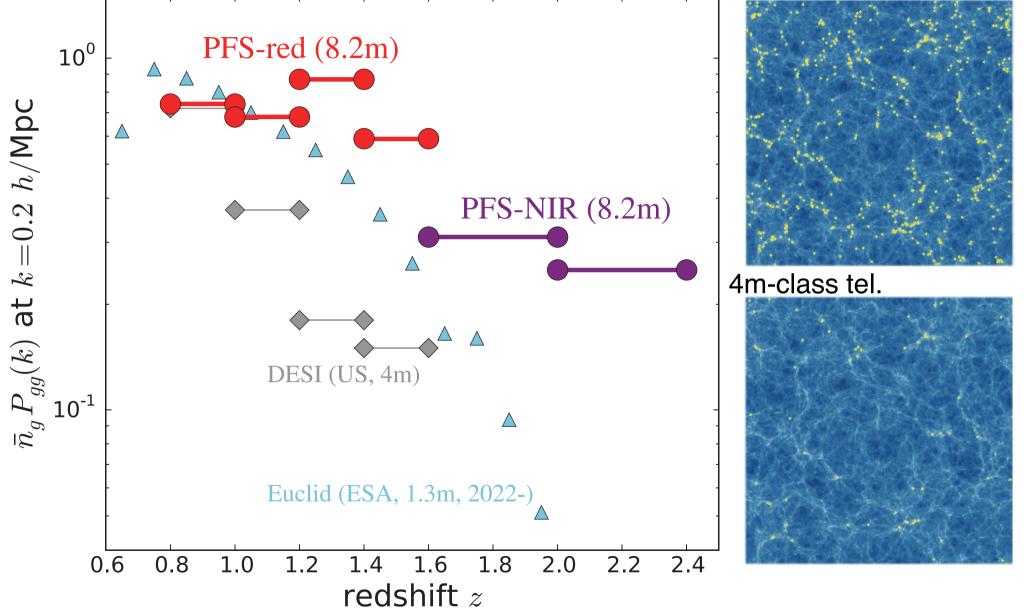
Masahiro Takada,^{1,*} Richard S. Ellis,² Masashi Chiba,³ Jenny E. Greene,⁴ Hiroaki Aihara,^{1,5} Nobuo Arimoto,⁶ Kevin Bundy,¹ Judith Cohen,² Olivier Doré,^{2,7} Genevieve Graves,⁴ James E. Gunn,⁴ Timothy Heckman,⁸ Christopher M. Hirata,² Paul Ho,⁹ Jean-Paul Kneib,¹⁰ Olivier Le Fèvre,¹⁰ Lihwai Lin,⁹ Surhud More,¹ Hitoshi Murayama,^{1,11} Tohru Nagao,¹² Masami Ouchi,¹³ Michael Seiffert,^{2,7} John D. Silverman,¹ Laerte Sodré, Jr.,¹⁴ David N. Spergel,^{1,4} Michael A. Strauss,⁴ Hajime Sugai,¹ Yasushi Suto,⁵ Hideki Takami,⁶ and Rosemary Wyse⁸

¹Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583

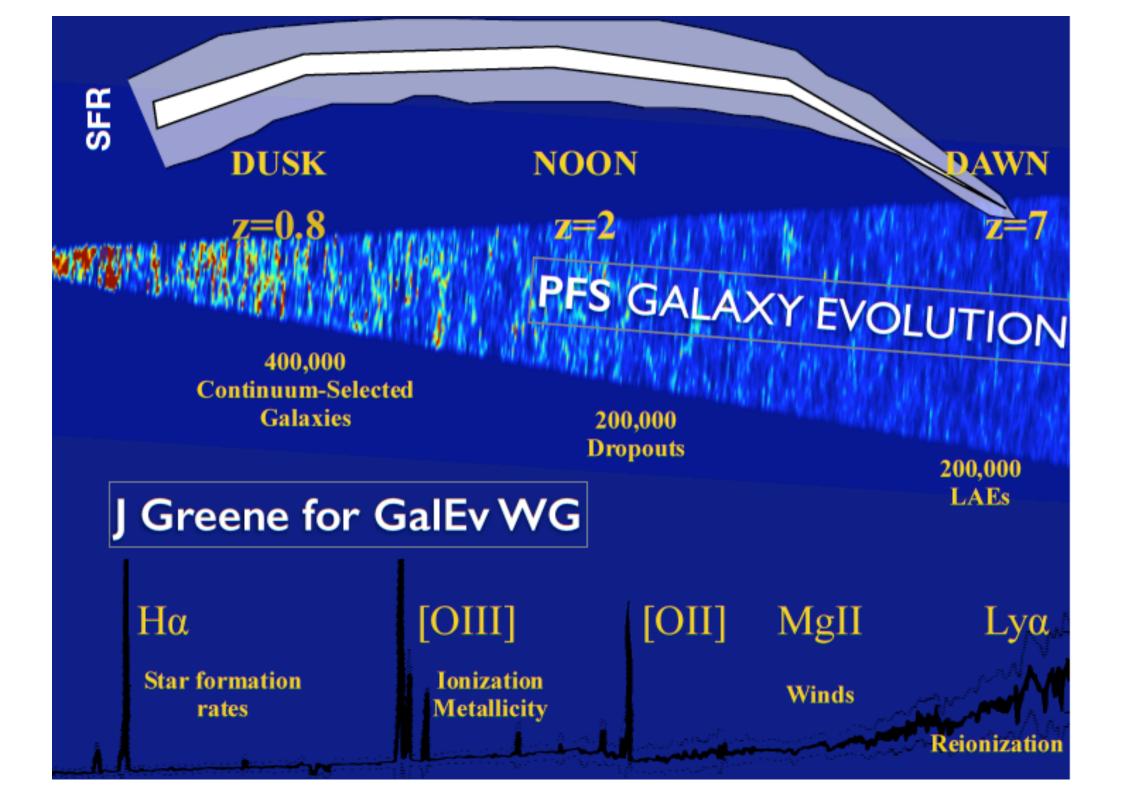
²California Institute of Technology, 200 East California Blvd, Pasadena, CA 91125, USA

³Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578

Science Objectives: Three Pillars

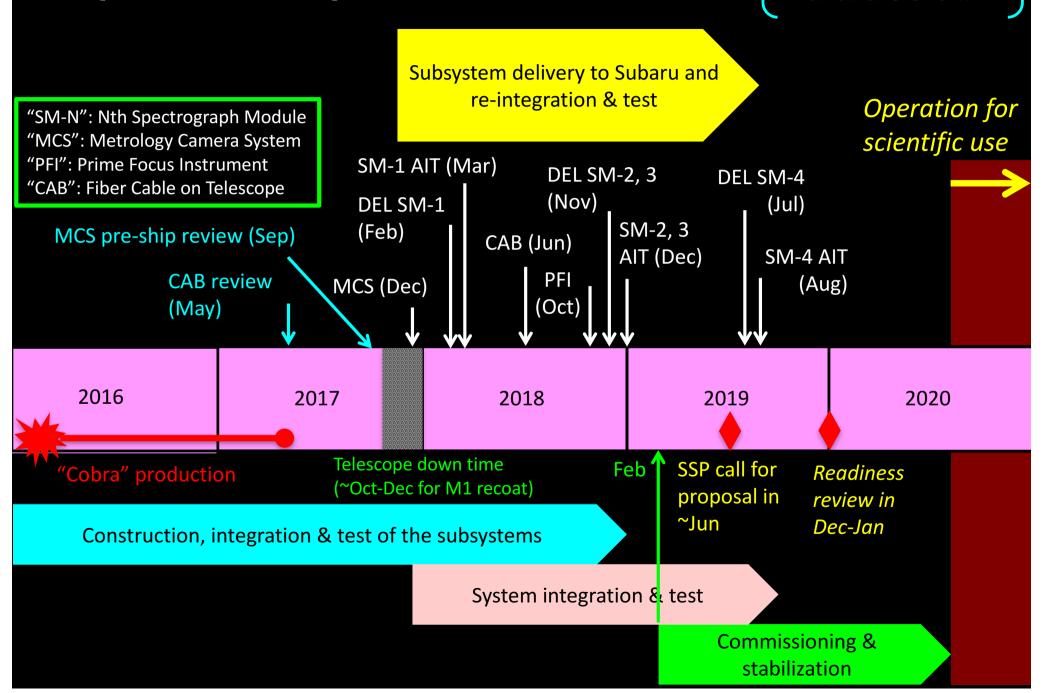

All science cases are based on a spectroscopic follow-up of objects taken from the HSC imaging data

- Cosmology (~100 nights)
 - ~4M redshifts of emission-line galaxies
 - BAO at each of 6 redshift bins over 0.8<z<2.4
 - Cosmology with the joint experiment of WL and galaxy clustering (HSC/PFS)
- Galaxy evolution studies (~100 nights)
 - A unique sample of galaxies (~1M) up to z~2, with the aid of the NIR arm
 - Dense sampling of faint galaxies (also many pairs of foreground/background gals)
 - Studying cosmic reionization with a sample of LAEs, LBGs and QSOs
- Galactic Archaeology (~100 nights)
 - ~1M star spectra for measuring their radial velocities
 - Use the 6D phase-space structure, in combination with GAIA in order to study the origin of Milky Way (also use the M31 survey)
 - Use a medium-resolution-mode survey of ~0.1M stars to study the chemodynamical evolution of stars in Milky Way


Power of PFS

Takada et al. 2014

Densest galaxy sample at z>1... before WFIRST (NASA: 2025-)PFS (8.2m) for z~1.5 slice

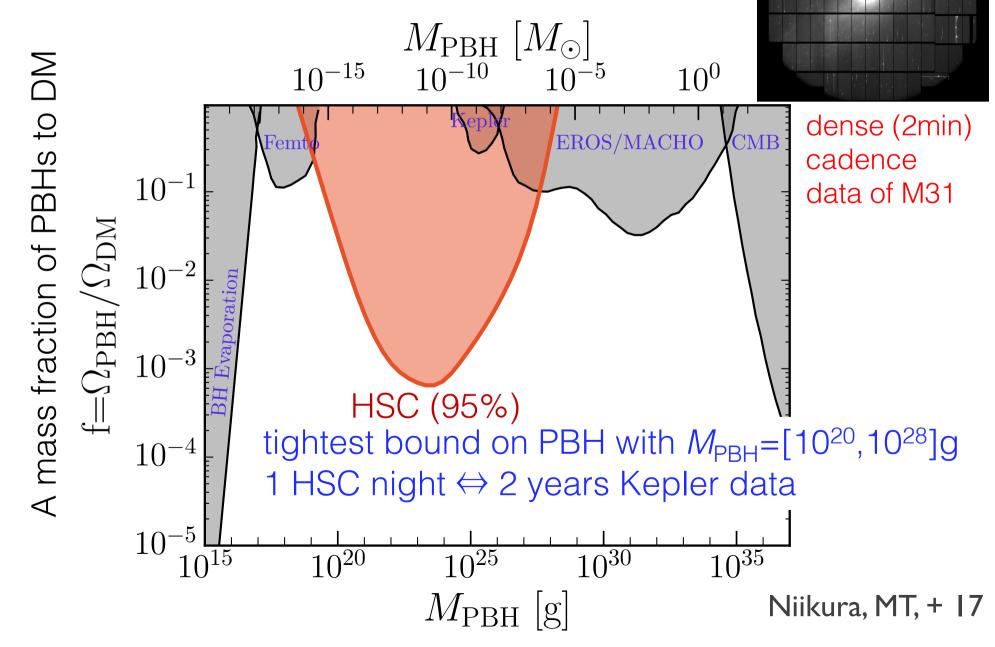


PFS Galactic Archaeology **J**0kpc V=20mag 20kpc **PFS** (8m) (4m) **GAIA'S REACH** V=21.5mag Gaia will The Gaia spacecraft will use parallax and ultra-precise position measurements to obtain the distances and 'proper' proper n (sideways) motions of stars throughout much of the Milky accurate Way, seen here edge-on. Data from Gaia will shed light on the per seco to 20,000 Galaxy's history, structure and dynamics. PFS (8m) V=22mag up to 30kpc Galactic Centre Previous missions could measure _Sun stellar distances with an accuracy of 10% only up to 100 parsecs* Gaia's limit for measuring distances with an accuracy of 10% will be 10,000 parsecs *1 parse

Updated top-level schedule

Subject to changes until the end ...

Subaru Strategy with the Future


- HSC & PFS allow for making Subaru Tel. a unique facility in 2020era: target obs ⇒ survey telescope
- HSC, PFS, GLAO major instruments in 2020era
- Various synergies
 - GAIA (2013)
 - Euclid (2019)
 - LSST (2020?)
 - WFIRST (2025?)
 - TMT& E-ELT (202?)

HSC microlensing constrain on PBH abundance

Summary

- The wide-field capability of Subaru is so unique, and very powerful for survey-oriented astronomy/cosmology
- Hyper Suprime-Cam (HSC) = Wide-field imager
 - HSC SSP survey: 2014 2019(20)
 - First public data release (28 Feb, 2016)
- Prime Focus Spectrograph (PFS) = Wide-field, multi-object spectrograph
 - Envision PFS SSP survey: 2020 –
 - Cosmology, Galaxy Evolution, Galactic Archaeology
 - Currently working of designing survey/science programs