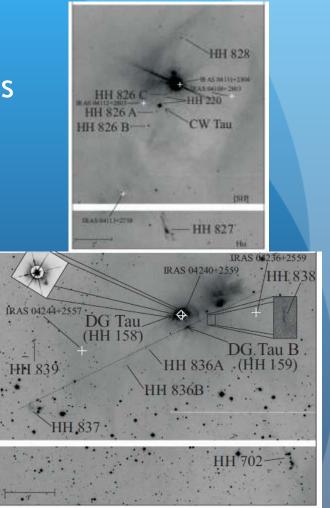
Studying Parsec Scale Jets in Star Forming Region

Tae-Soo Pyo <u>Subaru Tel</u>escope

Near-IR NBFs Survey of Jets in Massive Star Forming Region with GLAO


Key words:

- -. GLAO : FWHM ~ 0.2" , FoV~ 15'x 15'
- -. [Fe II], H2, Br_gamma, etc
- -. Parsec Scale Jets

Parsec Scale Jets: Giant HH flows

Outflow activity is associate with the all early stellar evolution states from embedded CLASS 0 to visible young stars CLASS II.

- Since mid-1990s
- Scale : a few minute length (~ 1.8' @ 1kpc)
- Shock : diagnosis of ICM (inter clump matter)
- Detail Structure in [Fe II], H2, Br_gamma, etc
- Faint Jets in distant Massive Star forming Region

McGroarrty et al. (2000)

NIR Imaging Surveys

- 2MASS
- DENNIS

 \bullet

....

- UKIDSS (WFCAM:26'x26')
- VISTA (1° x1.5°)

Broad Bands

UWISH2 (H2 filter Survey)

To study outflows in imaging, NBFs observation are necessary.

MHO (Molecular Hydrogen Object) Table

Region	Мар	Approx. RA Range	Approx. Dec Range	MHO #	.txt
Perseus	<u>M2</u>	03h 00m → 04h 00m	+25° → +35°	500-699	<u>Per.txt</u>
<u>Auriga (</u> excl. Per/Gem)	<u>M2</u>	03h 30m → 06h 30m	+30° → +56°	1000-1099	<u>Aur.bt</u>
Taurus (excl. Ori/Per)	<u>M2</u>	03h 00m → 05h 50m	+10° → +30°	700-799	Tau.bt
Camelopardalis	<u>M1</u>	04h 00m → 08h 00m	+56° → +90°	1100-1199	Cam.txt
Orion A	<u>M3</u>	04h 45m → 06h 00m	-15° → -04°	1-299	OriA.bd
<u>Orion B (</u> excl. Tau)	<u>M3</u>	04h 45m → 06h 00m	-04° → +16°	300-499	OriB.bd
<u>Gemini</u>	<u>M3</u>	05h 50m → 08h 00m	+14° → + 34°	1200-1299	<u>Gem.txt</u>
<u>Monoceros</u>	<u>M3</u>	06h 00m → 08h 30m	-13° → +14°	1300-1399, 3100-3199	Mon.bd
<u>Puppis (</u> excl. Vela)	<u>M4</u>	06h 30m → 09h 00m	-52° → -13°	1400-1499	Pup.bt
<u>Vela</u>	<u>M4</u>	07h 30m → 11h 00m	-55° → -38°	1500-1599	<u>Vel.txt</u>
<u>Carina</u>	<u>M5</u>	08h 00m → 12h 00m	-75° → -55°	1600-1699	<u>Car.txt</u>
<u>Chameleon (</u> excl. Car)	<u>M5</u>	08h 00m → 14h 00m	-85° → -70°	3000-3099	<u>Cha.txt</u>
<u>Centaurus</u>	<u>M5</u>	12h 00m → 15h 00m	-70° → -30°	1700-1799	<u>Cen.txt</u>
Circinus/Lupus	<u>M6</u>	15h 00m → 16h 00m	-70° → -30°	1800-1899	CirLup.txt
<u>Scorpius</u>	<u>M6</u>	16h 00m → 18h 00m	-60° → -30°	1900-1999	Sco.bt
Corona Australis	<u>M6</u>	18h 00m → 19h 30m	-45° → -35°	2000-2099	CrA.bd
Ophiuchus (excl. Ser)	<u>M6</u>	16h 00m → 18h 00m	-30° → +05°	2100-2199	<u>Oph.txt</u>
<u>Serpens</u>	<u>M7</u>	17h 30m → 18h 40m	-15° → +05°	2200-2299	<u>Ser.bt</u>
<u>Sagittarius (</u> excl. Ser)	<u>M7</u>	18h 00m → 20h 30m	-35° → -12°	2300-2399	<u>Sgr.txt</u>
<u>Aquila (</u> excl. Lyr)	<u>M7</u>	18h 40m → 20h 30m	-12° → +15°	2400-2499	Aqu.bd
Lyra	<u>M8</u>	18h 20m → 19h 00m	+5° → +45°	2500-2599	Lyr.bd
<u>Vulpecula</u>	<u>M8</u>	19h 00m → 21h 30m	+15° → +30°	2600-2699	<u>Vul.bt</u>
<u>Cygnus</u>	<u>M9</u>	19h 00m → 22h 00m	+30° → +55°	800-999	<u>Cyg.bd</u>
<u>Cepheus (</u> excl. Cas)	<u>M9</u>	19h 00m → 23h 30m	+55° → +90°	2700-2799	<u>Cep.txt</u>
Andromeda	<u>M9</u>	22h 00m → 00h 00m	+30° → +55°	2800-2899	And.bt
<u>Cassiopeia (</u> excl. Cep)	<u>M1</u>	23h 00m → 04h 00m	+50° → +90°	2900-2999	<u>Cas.txt</u>
Bibliography					

Covering Most major Starforming regions

Currently there are **1128** entries in the MHO catalogue (Last update: 10 June 2011)

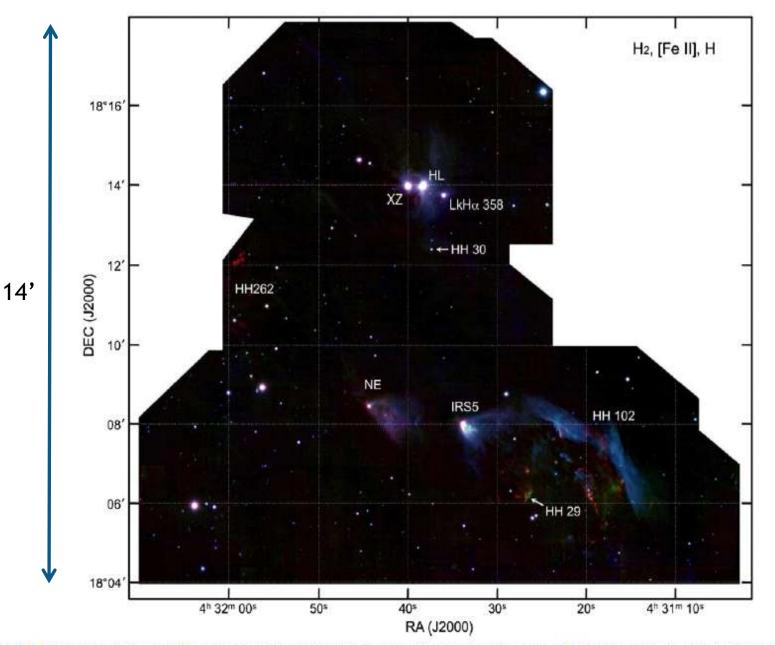
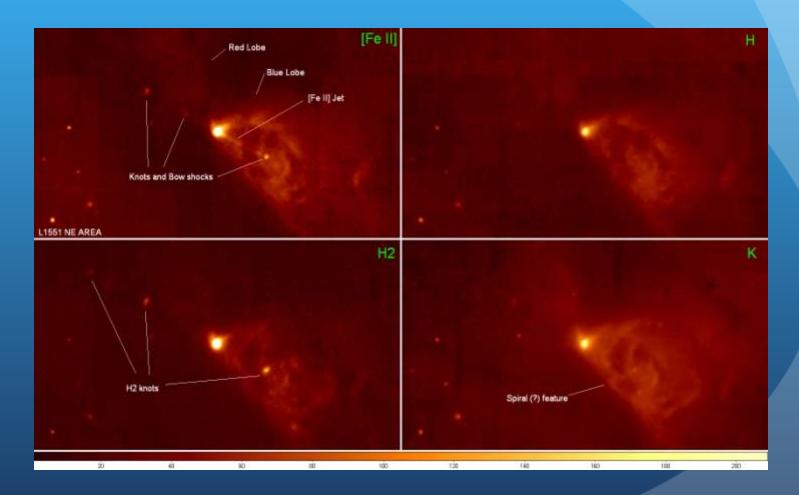
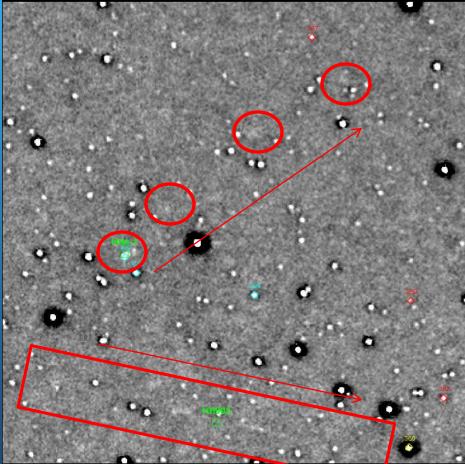



Figure 1. Composite color image of the entire observed area shown in a logarithmic scale. The blue, green, and red colors are assigned to the *H*, [Fe II], and H₂ filter frames, respectively. North is up and east is left. Hayashi & Pyo(2009)

[Fe II] and H2 in L1551 NE



Optical emissions and [Fe II] (HST)

Smith et al. (2004) NIR [Fe II] has small extinction, clear jet structure, simple background (low scattering). \rightarrow Detection of collimated jets and estimation of the the candidate source

Eg.) HH902, HHc-1 (Carina Nebula)

Long and sharp HH902 [Fell] jet and HHc-1 fossil flow

Faint but sharp jet of HH901

Marginal Detection of [Fe II] Jets

IRIS2/AAO Bad Seeing: 1.5- 2.3" 30 min on-source time

SUMMARY

- Suggestion of NIR NBFs imaging survey with GLAO
- New discovery chance of [Fe II] jets in distant massive star forming region
- [Fe II] emission is good compliment tracer for outflow phenomenon for H2 emission:
 - H2 traces shocked molecular outflows.
 - [Fe II] traces shocked and partially ionized atomic jets.
- Sub-arcsecond seeing condition is essential to recognize sharp jet features.