OH Suppression Fibre Test Unit

I. Iwata, T. Hattori, T. Nishimura, T.-S. Pyo, M. Kimura (Subaru Telescope) J. Bland-Hawthorn (Univ. Sydney)

OH Airglow: Major Obstacle for Deep NIR Observation

- Numerous OH Emission lines Dominate Night Sky from the Ground at $\lambda{<}2\mu m$
- Very Narrow: FWHM<0.1Å (Dominated by Doppler Broadening)
- Short Time-Scale Variability: ~ 5 min

Scattering

600 lines mm⁻¹ B&L grating

Fibre Bragg Gratings

- Optical fibres with a periodic variation in refractive index
- Fresnel reflections at each boundary
- Small, but in phase
 - \Rightarrow high reflection at a single wavelength

Fibre Bragg Grating

- R~10,000 Suppression of OH Line Wavelengths
- Suppress Inter-line Light, which Cannot be Removed by OHS Mask inserted in Dispersed Spectra
- Applicable to Single-Mode Fibres
- In Order to Collect Photons from Astronomical Objects, Multi-mode Fibre is Necessary
- → Need to Convert Multi-mode and Single-mode Fibres

Photonic Lantern

Leon-Saval, Birks, Bland-Hawthorn, 2005 Bland-Hawthorn et al. 2007

Univ. Sydney Photonics Lab. Feb. 2011

FBGs for GNOSIS

photo by T. Hattori

Multi-Core Fibre Bragg Grating (FBG)

- Current Test Unit (GNOSIS) uses Photonic Lantern which Converts a Multi-mode Fibre to 19 Independent Single-mode FBGs
- Cumbersome to Make and Expensive
- If We use This Technique to Integral Field Spectroscopy, Too Many FBGs Will be Required.
 (a) MMF transition SMF cores

Slide by S. Ellis, Feb 2011 On-sky demonstration

Slide by S. Ellis, Feb. 2011 GNOSIS - Fore optics

GNOSIS will be mounted at AAT f/8 Cassegrain focus

Slide by S. Ellis, Feb. 2011 GNOSIS - relay optics

Simulated Spectra

- z=3 Passive Galaxy (age=1 Gyr) with H=23 mag. (Vega)
- 8m Telescope
- R=1,000
- 8 hours

Ellis and Bland-Hawthorn 2008 MN 386, 47

Simulated Spectra

- z=11 QSO with
 - H=24.6 mag. (Vega)
- 8m Telescope
- R=1,000
- 70 hours

Ellis and Bland-Hawthorn 2008 MN 386, 47

Test Device Development

Plan for FY2011 (~ March 2012)

- Fabricate a Multi-Core Fibre Bragg Grating Unit
 - Only a part of H-band OH lines will be suppressed
- Test with IRCS
 - Relay Optics Between Nasmyth Focus and IRCS
 - Measure Throughput, by Comparing with and without FBG?
 - Taking Sky Spectrum and Verify OH Suppression
 - No Astronomical Object Observation
 - Dispersion R~5000 (Echelle mode) with 0.54" Slit

Future Perspective

- Step I: Multi-Core Test Unit (This Year)
 - Test with IRCS
- Step 2: Full Wavelength Coverage Test Unit
 - Test with IRCS?
 - Kakenhi (JSPS grant-in-aid)
- Step 2.5: Science Operation
 - Require a Target Acquisition Mechanism
- Step 3: New Instrument?

Summary

- OH Suppression Fibre or Fibre Bragg Grating May be a Breakthrough Technology for Deep Observation in Near-IR
 - Lower Cost, Effective Observation
- Test Observations of a Proto-type are On-going at AAO
- Fabricate the First Multi-core FBG for Subaru / IRCS
- Future: Integral-Field Spectroscopy with FBG?