Towards Galactic Archaeology with PFS

PFSによる銀河考古学に向けて

Masashi Chiba
(Tohoku University)
Galaxy formation in CDM paradigm

Assembly of CDM

Galactic dark halo

Bright parts are centrally concentrated
Main issues in GA

1. Formation of Galactic structures
 ✓ Merging history of the Milky Way?
 ✓ Formation process of each Galactic component?
 ✓ Is MW different from M31? If so, why?

2. Nature of galactic dark matter
 ✓ Missing satellites problem?
 ✓ Properties of luminous satellites? How many there?
 ✓ Dark matter profiles? Cuspy or cored?

All are recorded in old stellar populations
Fossil records of galaxy formation

Debris of building blocks

- Space and velocity distributions of ancient stars
 - Past collapse and merging events
 - Tracer of dark matter profiles
- Chemical abundance of ancient stars
 - Star formation and chemical evolution

Phase space

A building block

Thick disk

Thin disk

\([\text{Mg/Fe}] \)

\([\text{Fe/H}] \)
Galactic astronomy through resolved stars

- **Photometry**:
 - mag., color (→ color-mag. diagram)

- **Spectroscopy**:
 - metallicity (→ age), V_{rad} (kinematics)
 - abundance pattern (→ SF & chemical evol.)

- **Astrometry**:
 - proper motion, distance (→ 6d phase space)

Structure, dynamics, star formation and chemical evolution

⇒ galaxy formation and evolution
Substructures in the M31 halo

Northern Spur

G1 Clump

Stream

Ferguson+02
Several stellar halos in CDM models (Johnston+08)
Extracting merging history in M31

Identify and count the number of streams delineated by μ, [Fe/H], and V_{rad}

\Rightarrow Probability distribution of streams
HSC photometric survey of M31’s halo using optimized NB515 filter (g<22.5)

Metallicities and RVs of substructures and satellites with PFS

$I_{TRGB}=20.5$
Substructures in the MW halo (tidal debris of building blocks)
Metal-poor stars in angular momentum space (Hipparcos sample)

- measurement error of a few 100 (kpc km/s) smears out substructures

Astrometry with Gaia
- precise distances and proper motions
- resolves each of substructures (Building blocks of the stellar halo)
Gaia

Astrometry:
- $V = 15$, 12~25 μas
- $V = 20$, ~300 μas

Photometry:
- $V < 20$

RV measurement:
- $V < 17$ (150M stars)
- $R \sim 10000$, $\lambda = 8450$-8750A (CaT)
- $\Delta V_{rad} \sim 15$ km/s

[Fe/H] measurement:
- $V < 13$

Cf. Hipparcos
- $V < 12$, 1mas
Constraints on accretion time of a satellite
(McMillan & Binney 2008, Gomez et al. 2010)
⇒ Extracting merging history in the MW

Orbital freq.
\(\Omega r-\Omega \phi\) \(\Omega r-\Omega \phi\)

\(\Omega \sim \Omega_0\) \(\Omega \phi\)

\(P(k\phi)\)

\(L_z\)

7.9 Gyr 8.9 Gyr 7.6 Gyr
DSphs as ideal sites for DM study (via. velocity dispersion profiles)

Gilmore+07

$\sigma \sim$ a few to 10 km/s

DM dominated

Cuspy or core?
PFS
(Prime Focus Spectrograph)

FOV: 1.77 sq deg
(1.5 deg diameter)
2400 to 3000 fiber positioners
40 sec reconfig. time
λ: 600~1000nm +more?
R: 3000 +more?
Requested performance of PFS

1. Ability to measure RVs and [Fe/H] for many stars at the same time
 - Best synergy with Gaia, i.e., 15<V<20
 - Enable to determine σ of dSphs and streams accurately, i.e., $\Delta V_{\text{rad}} < 2 \text{ km/s}$
 - Enable to observe M31 stars with $I_{\text{TRGB}} = 20.5$, i.e., $V_{\text{lim}} \sim 21.5$

2. Ability to follow up high-res. spectroscopy for reasonable number of stars at the same time
 - $R=3-40000$, $\lambda < 9000A$, a few 100 fibers, $V<17$
WFMOS study
Team A & B

1. **LR mode** for metallicities and kinematics
 A) $V < 21.5$, $\Delta[Fe/H] \sim 0.2$, $\Delta V_{\text{rad}} \sim 10$ km/s, S/N~ 50,
 $R \sim 1800$, $\lambda=3900-9000$A using SEGUE pipeline
 B) $V < 20$, $\Delta[Fe/H] \sim 0.1$, $\Delta V_{\text{rad}} \sim 2$ km/s, S/N$\sim 10-15$,
 $R \sim 5000$, $\lambda=4800-5500$A (Mgb) & 8150-8850A (CaT)

2. **HR mode** for chemical tagging
 $V < 17$, $\Delta[Fe/H] < 0.1$, S/N$\sim 100-150$
 A) $R \sim 30000$, (1) $\lambda=6280-6593$A (2) 5015-5268A (3) 6456-6608A (4) 8380-8804A (5) 4112-4322A
 B) $R \sim 20000$, $\lambda=4800-6800$A

1000-2000deg2, 100-280nights for each mode
Ca II triplet as [Fe/H] indicator

Reduced EW $W'(\Sigma Ca, V_{HB} - V)$

Valid for RGBs with $-4 < \sim [Fe/H] < -0.5$
Ca II HK as $[\text{Fe/H}]$ indicator

Valid for both dwarfs and giants with $-4.0 < [\text{Fe/H}] < 0.5$

Beers+99
Chemical tagging?

De Silva+07

Abundance variation in an open cluster

ΔMg ~0.05 dex
ΔFe ~0.02 dex

Very precise spectroscopy for many stars (million stars) is required!

すばるでやるか?
恐らくNo
Best step towards GA with PFS

1. PFS LR in perfect synergy with Gaia
 - $R=5000$, $\lambda=3900-9000\text{A}$, ~3000 fibers
 - RVs and [Fe/H]s for million stars with $17<V<21.5$, $\Delta[\text{Fe/H}]/\sim0.1$, $\Delta V_{\text{rad}}/\sim2$ km/s
 - Discover many substructures and identify merger history

2. PFS HR for follow-up studies
 - $R=40000$, (1) $\lambda=6280-6593\text{A}$
 (2) 5015-5268A (3) 6456-6608A (4) 8380-8804A
 (5) 4112-4322A , ~200 fibers, with $V<17$
 - Chemical history of each merging progenitor

| Table 5. Predicted Log star counts per square degree in the V-band |
|------------------------|-----------------|----------------|---------------|-----------------|----------------|
| V | $|b|=20^\circ$ | 30° | 60° | 90° |
| 17 | 3.36 | 3.12 | 2.67 | 2.55 |
| 18 | 3.61 | 3.35 | 2.87 | 2.74 |
| 19 | 3.85 | 3.56 | 3.05 | 2.92 |
| 20 | 4.06 | 3.75 | 3.23 | 3.09 |
| 21 | 4.24 | 3.91 | 3.39 | 3.25 |
| 22 | 4.38 | 4.05 | 3.54 | 3.38 |

~1400 stars/PFS field @ $V=17, b=|45|$
Photometry to $V=20$
End