ULTIMATE-Subaru Collaboration Meeting (NAOJ-Mitaka, 2018/1/15-16)

High-z imaging science with ULTIMATE-Subaru

Taddy Kodama (Tohoku University)
on behalf of the high-z imaging science WG

"Current" high-z imaging science WG

```
Masao Hayashi (NAOJ)
      Ikuru Iwata (Subaru)
Satoshi Kikuta (Sokendai/NAOJ)
Tadayuki Kodama (Tohoku Univ.)
 Kotaro Kohno (Univ. of Tokyo)
     Yusei Koyama (Subaru)
      Yen-Tin Lin (ASIAA)
     Yuichi Matsuda (NAOJ)
    Yosuke Minowa (Subaru)
   Masato Onodera (Subaru)
Takatoshi Shibuya (Univ. of Tokyo)
  Rhythm Shimakawa (UCSC)
     Tomoko Suzuki (NAOJ)
      Ichi Tanaka (Subaru)
```

What makes the acceleration of galaxy formation at z>2 and the subsequent quenching at z<2?

Many of galaxies are in vigorous formation phase at the cosmic noon

"Clumpy" SFGs are common at the cosmic noon (~40% of HAEs)

Massive clumpy galaxies tend to have a red clump, and be detected at 24µm.

→ The red clumps may be the site of nucleated dusty starburst to form a bulge?

Tadaki, TK, et al. (2012)

Proto-clusters play major roles at the cosmic noon

In the cosmic noon (1<z<4; 4Gyr), Universe and clusters formed 50% and 75% of their total stellar mass.

The fractional CSFRD in (proto-)clusters is only 1% at z=0, but increases to 20% at z=2 and 50% at z=10.

Why 0.2"?

 $0.2" \Leftrightarrow 1.5$ kpc at 1 < z < 3

- For compact QGs ⇒ Sensitivity gain (~2x)!
- For extended SFGs ⇒ Anatomy (bulge & clumps)!
- Comparable to HST resolution (WFC3, H-band)

A star-forming galaxy at z~2

Why K-band?

- Balmer break to z<5 ⇒ Stellar mass!
- Ha to z=2.6, [OIII] to z=3.7 \Rightarrow SFR!
- Advantage over WFIRST (<2µm)

Medium-Band Filters

Pair Narrow-Band Filters

Why 14 arcmin?

- Statistical anatomy along three axes (z, env, mass)
 >1,000 galaxies over 27(=3³) cubes
- Advantage over JWST (2 arcmin)

FoV comparison of NIR instruments in 2020's at λ>2μm

 \Re Note that there is no wide-field space mission which can probe NIR at λ >2 μ m!

Key science (high-z imaging)

- Hunting z>7 LAEs and other UV lines at z>4 with NB
- Stellar mass assembly, LSS, size/morphology evolution, from a mass-selected sample since z~5 with MB
- High resolution mapping of stellar mass and SF activities to resolve internal physics of galaxy formation

→ How are galaxies (bulge/disk) built-up with time?
When and How are they quenched?

Searching for z>7 galaxies at the birth

Direct extension of LAE survey with S-Cam/HSC towards z>7

(+ other UV lines – e.g. CIII], OIII, HeII, CIV)

NBF, Point Source, 10hrs

Filter	redshift	$L_{ m lim}$	No ev.	Slow ev.	Rapid ev.
NB1063	7.7	1.62×10^{42}	36	17	1.8
NB1185	8.7	$1.98{ imes}10^{42}$	31	8.6	0.19
NB1340	10.0	$2.91{\times}10^{42}$	9.7	1.5	5.3×10^{-3}

Expected Num. of LAEs per 15' FoV (10-h integration)

$CIII]_{\lambda\lambda 1909}$ to diagnose ISM conditions, radiation nature of galaxies at z>4

SWIMS-18 strategy for ULTIMATE

Super multi-A (NIR) imaging survey of the Cosmic Noon over a 1-deg² unbiased field + some high density regions on Subaru (8.2m; 2018-2020) and TAO (6.5m; 2020-)

- 6 Narrow-Band Filters (NBF)
 SFR limited sample and AGNs at z=0.9, 1.5, 2.3, 3.3.
 Ha & [OIII] dual emitters with pair NBFs.
- 9 Medium-Band Filters (MBF) Stellar mass limited sample at 1 < z < 5 with improved phot-z ($\Delta z/(1+z) \sim 0.01$).
- 3 Broad-Band Filters (BBF)
- Tracking the cosmic histories of "mass assembly" and "star formation/AGN activities" back to z~3-5.

Six Narrow-band filters (NBF)

SW/MS-18

SFR-limited sample at z=0.9, 1.5, 2.3, and 3.3

NB filters	λ_c	FWHM	$z(H\alpha)$	z([OIII])	$z(H\beta)$	z([OII])	HSC filter pairs	Cluster targets
	$(\mu \mathrm{m})$	$(\mu \mathrm{m})$	6563Å	5007\AA	4861\AA	$3727 { m \AA}$	NB921 (Hβ@z=0.895)	
NB1244	1.244	0.012	0.895	1.484	1.559	2.337	NB926 ([OII]@z=1.485)	CL1604+4304(z=0.895)
NB1261	1.261	0.012	0.922	1.519	1.595	2.384	NB718 ([OII]@z=0.926)	CL1604+4321(z=0.920)
NB1630	1.630	0.016	1.484	2.256	2.354	3.374	NB926 ([OII]@z=1.485)	
NB1653	1.653	0.016	1.519	2.302	2.401	3.436	NIDOOF (L. C. O.O.)	HS1700+64 (z=2.30)
NB2137	2.137	0.021	2.256	3.268	3.396	4.734	NB395 (Lyα@z=2.25) NB515 (Lyα@z=3.23)	J0932+0925 (z=2.25)
NB2167	2.167	0.021	2.302	3.328	3.458	4.814	NB515 (Lya@z=3.23) NB527 (Lya@z=3.32)	$HS1700+64 \ (z=2.30)$
					_			J1541+2702 (z=3.33)

& Hα) with 4 pair NBFs → Redshift identification & Ionization states (ratio)

wavelength $[\mu m]$

1.5

1.6

1.1

Nine Medium-band filters (MBF) SWIMS-18

M*-limited sample of galaxies up to z~5

MB filters	λ_c	FWHM	$z_s(\text{Bal.Lim.})$	$z_s(D4000)$
	$(\mu \mathrm{m})$	$(\mu \mathrm{m})$	$3645 { m \AA}$	$4000 \rm{\AA}$
Y	1.05	0.10	1.74	1.50
J1	1.17	0.12	2.05	1.78
J2	1.29	0.12	2.37	2.08
H1	1.50	0.12	2.95	2.60
H2	1.62	0.12	3.28	2.90
H3	1.74	0.12	3.61	3.20
K1	2.03	0.14	4.38	3.90
K2	2.17	0.14	4.76	4.25
K3	2.31	0.14	5.14	4.60

BB filters	λ	λ_c	FWHM
	$(\mu \mathrm{m})$	$(\mu \mathrm{m})$	$(\mu \mathrm{m})$
J	1.17 - 1.33	1.25	0.16
H	1.48 – 1.78	1.63	0.30
$ m K_s$	1.99 – 2.30	2.15	0.30

Improved measurements of phot-z and SED-based Av.

Will open a new window to 4<z<5 with K1,K2,K3!

Wavelength(μ m)

K1, K2, and K3 capture the Balmer break feature at 4 < z < 5

Toshikawa et al.

Mass assembly history of galaxies: stellar mass functions back to z~5

ULTRA-VISTA (COSMOS) Muzzin et al. (2013) 100K galaxies over a 1.62 deg^2 field down to Ks=23.4 (AB)

Down to 2 (5) x 10⁹ M_o back to z~4 (5) with ULTIMATE MB imaging (10hr/band)

Size Evolution of Star-Forming Galaxies back to z~5

van der Wel et al. (2014)

Mass profile evolution within galaxies back to z~5 Stellar mass radial profiles

Giant galaxies (e.g. elliptical galaxies)

 $M_{stars} = 3 \times 10^{11} M_{\odot} (z=0)$ $N_{comoving}(>M) = 2 \times 10^{-4} Mpc^{-3}$ 1010 0.2" 109 $\Sigma~(\mathrm{M}_{\odot}/\mathrm{kpc}^2)$ 10⁸ 107 106 10 radius (kpc) van Dokkum et al. (2010)

Milky-way class galaxies

$$M_{\text{stars}} = 5 \times 10^{10} \,\text{M}_{\odot} \,(z=0)$$

 $N_{\text{comoving}} (>M) = 1.1 \times 10^{-3} \,\text{Mpc}^{-3}$

van Dokkum et al. (2013)

inside-out growth!

Bulges and Disks grow together at z>1.

Mapping/Resolving SF activities and stellar mass distributions within galaxies in making

 $H\alpha$ map of z~1 galaxies from 3D-HST (Wuyts et al. 2013)

GANBA-Subaru at 2<z<3.7 at the K-band

Galaxy Anatomy with Narrow-Band AO imaging with Subaru

AO-assisted narrow-band $H\alpha$ / [OIII] imaging with IRCS on Subaru (0.2" ~ 1.6 kpc)

 $EW(H\alpha) \sim sSFR$

Continuum ~ Mstars

 $L(H\alpha) \sim SFR$

A Hα emitter at z~2.19 (NB2095 + AO188) in SXDF-CANDELS

Being-truncated bulge + Off-center star-forming clump?

Minowa et al. (2018; submitted)

ULTIMATE-Subaru will provide truly statistical data of this kind!

Propagation of star formation/quenching within galaxies Hα / [OIII] compactness back to z~2.5 / 3.7

Inside-out quenching (versus compaction)?

Distant clusters (z<1.5) discovered by HSC²

"Normal" cluster at z=1.2 showing excesses in both QGs and SFGs

"Blue dominated" cluster at z=0.8 with a lack of overdensity in QGs

Blue Cloud ([OII], [OIII] emitters) Red Sequence (r'i'z'-selected)

GOLDRUSH

Proto-clusters at 2<z<6 with LBGs over 1,400 deg² (HSC-SSP-W)

179 proto-clusters at z~3.8 over 121 deg² using HSC-SSP-Wide (*g*-dropouts)

Toshikawa et al. (2017), Onoue et al. (2017)

ULTIMATE will provide rest-frame optical view of proto-clusters (e.g. M*, SFR)

ULTIMATE-K survey

Narrow/Medium/Ks band imaging with GLAO+WFI (15')

- 0.75 mag deeper (point-source), 8 / 250 times wider FoV than MOIRCS / IRCS, and 0.2" spatial resolution.
- NB survey with 0.2" seeing (Extension of MAHALO/GANBA)
 Propagation/quenching of SF in galaxies with Ha,[OIII] map for 1,000s of SFGs at 2<z<3.7 with a 1.6kpc resolution.</p>
- MB survey (K1, K2, K3 (+Ks)) (Extension of SWIMS-18) 10 hrs exp. $(26mag; 5\sigma)$ /FoV/band = $640hrs/deg^2$ for 4 filters Mass assembly history back to z~5 with Balmer break galaxies at 4 < z < 5 of $\sim 4,000$ / deg^2 (?)
- WFIRST/EUCLID only to $\langle 2\mu m. JWST has a tiny FoV (2.2'^2 x 2)$

Summary

- ULTIMATE will be an excellent tracer of stellar mass out to z~5 at rest-frame optical.
- Stellar mass assembly history all the way from 5 x 10⁹ M_o at z~5 to the present-day.
- Size/profile evolution from z~5.
- Super-cluster (LSS) scale assembly history from z~5 together with HSC+PFS.
- Hunting z>7 Lya emitters at the bright-end.