Toward "Complete Census" of Supermassive Black Holes with ULTIMATE

Yoshiki Matsuoka (NAOJ)

Considerations: from SMBH/AGN perspective

		Imaging			M-IFS							
	JH	K	MB, NB	J	Н	K	JHK					
Pointed observations	JWST, TMT,											
Surveys	WFIRST			R~5	RST 500							
				PFS R~3000								

- ★ We may still want to do JH survey over the area overlooked by WFIRST. (e.g., HSC/PFS survey fields where abundant targets are available for follow-up.)
- * AGNs are point sources and benefit from the sensitivity improvement with GLAO. Do we also gain from the better spatial resolution?
- ★ Broad-line AGNs are relatively sparse on the sky (~10 per 15' FoV at i < 24 mag).

Questions from the organizers

Q1: What is the key science/observations for ULTIMATE in your research field?

- * "Complete census" of supermassive black holes (SMBHs) by a HK spectroscopic survey, combined with the HSC and PFS surveys.
 - (* Also, systematic IFS observations of AGN host galaxies.)

Q2: Which instrument is the 1st priority for ULTIMATE?

★ MOS (M-IFS).

Q3: Do you have good science cases with GLAO + MOIRCS in ~2020-2023?

* The HK spectroscopic survey can be started with lower efficiency.

Q4: Which survey design sounds best for you?

★ (D) MOS survey, with a fraction of slits allocated to HSC-PFS AGNs/galaxies.

SMBHs: why do we care?

They are ubiquitous in the Universe

- * Almost every galactic bulge hosts SMBHs, at least in the local Universe.
- ★ They date back to z ~ 7 and beyond, only <1 Gyr after the Big Bang.</p>
- ★ They contain ~1/1000 of the host bulge masses; this is huge!

They may have had a critical impact on galaxy evolution

- * Tight correlation between SMBH and host masses.
- * AGN host galaxies are often accompanied by fast gas outflows and very turbulent velocity fields.
- ★ Models need the "AGN feedback" to reproduce observed galaxies, e.g., their luminosity function.

and many more reasons...

M and M: two fundamental quantities

M: SMBH mass, M: mass accretion rate, often expressed as the Eddington ratio λ α M/M

COSMOS + VVDS + SDSS (Schulze+15)

- ★ We need to know the mass and accretion-rate functions to "understand" SMBHs as a population.
- * In order to do so, we have to collect a larger and more homogeneous sample across redshifts.
 - → Subaru HSC + PFS + ULTIMATE!

M and M: two fundamental quantities

SMBHs come in three(+) flavors, in optical-NIR observations.

- * Broad-line (BL) AGNs, identified with broad (> 1000 km/s) emission lines
- * Narrow-line (NL) AGNs, identified with narrow emission lines with BPT-like diagrams

* Quiescent or optically-dim SMBHs (e.g., heavily-obscured AGNs)

galaxies

HSC finds candidates of

HSC finds galaxies, which may contain

NL

Q/OD

PFS confirms and measures **M** in

BL

NL @ z < 1.5 (BPT, MEx)

Q/OD @ z < 1.5 (BPT, MEx) PFS measures M in

BL @ z < 3.5 (H β , MgII)

NL @ z < 1.5 (σ_{star})

Q/OD @ z < 1.5 (σ_{star})

X-ray and MIR missions find obscured

BL

NL

Q/OD

ULTIMATE confirms and measures **M** in

NL @ 2 < z < 4 (BPT, MEx)

Q/OD @ 2 < z < 4 (BPT, MEx) ULTIMATE measures M in

BL @ 4 < z < 7 (H β , MgII)

NL @ 2 < z < 4

([O III], σ star)

Q/OD @ 2 < z < 4 (σ_{star})

M and M functions across redshifts

HSC searches for broad-line AGNs (and galaxies)

HSC-SSP survey

300 nights over 2014 - 2019(?)

- **★** Wide 1400 deg², r_{AB} < 26.1 mag
- * Deep 27 deg², $r_{AB} < 27.1 \text{ mag}$
- **★** UDeep 3.5 deg², r_{AB} < 27.7 mag

(Matsuoka+16)

	Table 7: Quasar Samples												
		Wide (1	$400 \text{ deg}^2)$		Deep (27 deg ²)								
redshift	3.7-4.6	4.6-5.7	5.9-6.4	6.6-7.2	< 1	3.7-4.6	4.6-5.7	6.6-7.2					
mag. range	r < 23.0	i < 24.0	z < 24.0	y < 23.4	i < 25.0	i < 25.0	i < 25.0	y < 25.3					
number	6000	3500	280	50	2000	200	50	3					

- ★ BL-AGN candidates are now routinely selected with HSC colors.
- ★ Individual efforts of spectroscopic follow-up are underway.
 (e.g., SHELLQs, our Subaru intensive program to identify z > 6 quasars)
- ★ Numerous galaxies are being detected, with photo-z estimates, which may contain NL-AGNs or quiescent/optically-dim SMBHs.

✓ Obscured population?(X-ray, MIR, ... → Ueda-san's talk)

PFS/ULTIMATE confirms AGNs/SMBHs, and measures M

BL AGNs (Selsing+16)

NL AGNs or Q/OD SMBHs (Kauffmann+03)

✔ Radiation efficiency? (models, "continuity-condition" measurements)

BPT diagram (Fosbury+07)

MEx diagram (Juneau+11)

✓ How robust are these diagrams (PFS)?

PFS/ULTIMATE measures M

BL AGNs: Hβ and/or MgII λ2800 measurements

NL AGNs or Q/OD SMBHs: σ_{star} and/or [O III] measurements

✓ How global is this relation? (TMT)

✓ What is the physical origin? (TMT)

$$\frac{M_{\rm bh}}{{\rm M}_{\odot}} = 3.37 \left(\frac{\lambda L_{3000}}{10^{37} \,{\rm W}}\right)^{0.47} \left[\frac{{\rm FWHM(Mg\,II)}}{{\rm km\,s}^{-1}}\right]^2$$

Calibration? (PFS)

[O III] width as a surrogate for σ_{star} (e.g., Brotherton+15)

ULTIMATE/MOS probes more distant Universe

* Evolution of SFR density and BH mass-accretion density (x5,000) across redshifts (Aird+12, Kormendy+13)

	Z	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
BL	Mg II (λ2800)		PFS													
BL	Ηβ (λ4861)	PFS	PFS	PFS	PFS											
NL Q/OD	σ _{star} (≲ 5000 Å)	PFS	PFS	PFS	PFS											
NL	[Ο III] (λ5007)	PFS	PFS	PFS	PFS											

ULTIMATE/MOS probes more distant Universe

★ Evolution of SFR density and BH mass-accretion density (x5,000) across redshifts (Aird+12, Kormendy+13)

	Z	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
BL	Mg II (λ2800)		PFS	PFS	PFS	PFS	PFS	PFS	PFS	ULTI MATE						
BL	Ηβ (λ4861)	PFS	PFS	PFS	PFS	ULTI MATE	ULTI MATE	ULTI MATE	ULTI MATE	ULTI MATE						
NL Q/OD	σ _{star} (≲ 5000 Å)	PFS	PFS	PFS	PFS	ULTI MATE	ULTI MATE	ULTI MATE	ULTI MATE							
NL	[Ο III] (λ5007)	PFS	PFS	PFS	PFS	ULTI MATE	ULTI MATE	ULTI MATE	ULTI MATE							

Note: ULTIMATE HK spectroscopy would be limited to luminous part of the HSC-PFS sample, e.g., BOSS-class quasars (~a few per 15' FoV).

Comparison with theoretical models

Summary

- * SMBHs are important; they are ubiquitous in the Universe, and may have had a significant impact on galaxy evolution.
- ★ We need to constrain the mass and accretion-rate functions, the two fundamental quantities, to "understand" this population.
- ★ Subaru HSC + PFS + ULTIMATE are a perfect combination, which will provide a critical step toward the "complete census" of SMBHs across the Universe.

Questions from the organizers

Q1: What is the key science/observations for ULTIMATE in your research field?

- * "Complete census" of supermassive black holes (SMBHs) by a HK spectroscopic survey, combined with the HSC and PFS surveys.
 - (* Also, systematic IFS observations of AGN host galaxies.)

Q2: Which instrument is the 1st priority for ULTIMATE?

★ MOS (M-IFS).

Q3: Do you have good science cases with GLAO + MOIRCS in ~2020-2023?

* The HK spectroscopic survey can be started with lower efficiency.

Q4: Which survey design sounds best for you?

★ (D) MOS survey, with a fraction of slits allocated to HSC-PFS AGNs/galaxies.