Time-Domain Science with ULTIMATE-Subaru

Masaomi Tanaka (National Astronomical Observatory of Japan)

Time-domain science

Image @ $t = t_1$

Image @ $t = t_2$

Subaru/HSC (Tominaga, Morokuma, MT+ 2015)

- Transients
 - supernova, gamma-ray bursts, GW sources, ...
- Variable stars

Why transient surveys in NIR?

- Nearby supernovae (reddened)
- High-redshift supernovae (redshifted)
- Gravitational wave sources (intrinsically red)

Missing supernovae?

star formation rate => supernova rate

$$R_{\rm SN}(z) = \dot{\rho}_*(z) \frac{\int_{M_{\rm min}}^{M_{\rm max}} \psi(M) dM}{\int_{0.1}^{100} M \psi(M) dM},$$

Madau & Dickinson 14

Horiuchi+11

Fundamental questions in stellar astrophysics

Minimum mass of supernova? 8 Msun? 10 Msun?

Doherty+15

Do all massive stars explode? Not necessarily

Sukhbold+16

Population and mass function of BHs (=> GWs)

Observational uncertainty: dust extinction

Optical surveys miss ~> 20% of SNe?? Mattila+12

Demand for transient survey in NIR Too small FOV => only LIRG and ULIRG (w/ AO)

LIRG IRAS 18293-3413 VLT/NACO (K-band)

Arp 299 (~2 SN / yr expected!)
HST/NICMOS (F164N)

ULTIMATE: Wide-field non-targeted transient survey

- "K-only" survey (survey design C)
 - 20 deg² over 5 yr, 5 hr (300 min) / FOV, 26.2 mag depth
 ~23.5 mag x 100 epochs (3 min each)
 - Required time sampling ~ 5 day
 => 100 epochs over ~2 yr baseline
 - ~ 80 supernovae! (< 500 Mpc)
 The first systematic SN rate measurement in NIR

Pros: Good use of wide-field capability

Cons: WFIRST (0.3 deg²) can do better (wider surveys with better sampling/control)

* JH & K are not so different in terms of extinction

Why transient surveys in NIR?

- Nearby supernovae (reddened)
- High-redshift supernovae (redshifted)
- Gravitational wave sources (intrinsically red)

Supernova as tracers of high-z Universe

"Superluminous" SN: L ~ 10⁸⁻¹⁰ Lsun

Superluminous SNe are detectable @ z ~ 7

SN rate => # of massive stars UV or dust emission => Star formation rate

GRB rate => **SFR**

Robertson & Ellis 2012

Caveats:
Metallicity
dependence of
SN (GRB) progenitor

ULTIMATE: Deep IR transient survey?

- "K-only" survey (C)
 - 20 deg² over 5 yr,
 26.2 mag depth
 > ~25 mag x 10 epochs
 over 3 yr
 - ~ 10 SNe @ z>6 small number, but still among best in 2020s

Pros: K is slightly better than JH (Euclid/WFIRST) for z>7

Cons: WFIRST can go deeper

Coordinated survey with HSC/LSST + WFIRST?

Why transient surveys in NIR?

- Nearby supernovae (reddened)
- High-redshift supernovae (redshifted)
- Gravitational wave sources (intrinsically red)

Dawn of GW astronomy

GW 150914 BH-BH merger (~30 Msun) @ 400 Mpc

NEXT!
NS-NS merger (~< 200 Mpc)
or BH-NS merger (~< 800 Mpc)

N ~30 (0.3-300) events/ 1 yr

LIGO Scientific Collaboration and Virgo Collaboration, 2016, PRL, 061102

The 2nd is also BH-BH merger (released on this Wed)

R. Flaminio's talk yesterday

GW 151226 BH-BH merger (~14+8 Msun) @ 440 Mpc

LIGO Scientific Collaboration and Virgo Collaboration, 2016, PRL, 241103

1 deg

~ 100 galaxies / 1 deg² (< 200 Mpc)

SDSS

- Localization
- ~ 600 deg² (GW150914)
- ~ 1400 deg2 (GW151226)

(~< 10 deg² with</pre>

Advanced Virgo and KAGRA)

Detection of electromagnetic (EM) counterparts is essential

- Redshift (distance)
- Host galaxy
- Local environment
- No plausible EM counterpart was detected for GW150914 (neither for GW151226 so far)
- EM emission from BH-BH merger??

Electromagnetic signature from NS mergers (powered by radioactive r-process nuclei)

Optical (i)

MT & Hotokezaka 13, MT+14, MT 16

Subaru/HSC for GW151226 (50 deg²) (J-GEM, Yoshida et al. 2016, GCN 18840)

Brightness of the emission => Ejected mass of r-process elements

NS merger as a possible origin of r-process elements

Event rate

R_{NSM} ~ 100 event/Myr/Galaxy = 10⁻⁴ event/yr/Galaxy

NS-NS merger rate Within 200 Mpc ~ 30 GW events/yr $(^{\circ}0.3-300)$

Ejection per event EM

M_{ei}(r-process) ~ 10⁻² Msun

M(Galaxy, r-process) \sim M_{ej}(r) x (R_{NSM} x t_G) $\sim 10^{-2} \times 10^{-4} \times 10^{10} \sim 10^{4} \text{ Msun}$

Importance of NIR: brighter/longer timescale

- L_{bol} ~ L_{IR} => Mass of ejected material
- Smoking gun: red and featureless spectrum (higher expansion velocity than supernovae)

ULTIMATE: IR survey for GW sources

- Survey for ~10 deg²
 - 24 mag depths (10 min)
 - 150 pointing (FOV 0.07 deg2)=> 25 hr ~ 2.5 nights
- Spectroscopy w/ AO
 (multiplicity is not important)

Pros: Great use of wide-field capability (would be great if even wider)

Cons: WFIRST can also do this but ground telescopes are usually more flexible

Wider wavelength coverage is critical to measure the total luminosity

Replies to the questions

- 1. Key science in the post-JWST/WFIRST era
 - Identification of GW sources (if not realized by 2020s) and mass measurement of r-process elements
- 2. 1st priority instrument
 - Wide-field imager for time-domain science
- 3. Science w/ GLAO + MOIRCS
 - ~1/7 of what I presented (proportional to FOV)
- 4. Which survey design
 - "K-only" survey (C) separated into many epochs
- 5. Options for wide-field imager
 - Wider field of view > pixel scale (in general)

Summary

- Transient science is blooming NOW!
 - PTF, PS1, DECam, HSC, ZTF, LSST, and WFIRST...
- Nearby supernovae
 - Do all massive stars explode?
 - IR blank-field transient survey
 "K-band only" survey split into >50 epochs
- High-redshift supernovae
 - SN counting => IMF at high-z Universe
 - IR deep transient survey
 "K-band only" survey split in to ~10 epochs
- Gravitational wave sources
 - NS merger as possible origin of r-process elements
 - ToO transient surveys & spectroscopy