

GLAO on Subaru: A Canadian Perspective

Subaru ULTIMATE Science Workshop NAOJ, Mitaka, Japan

Luc Simard
June 16, 2016
Astronomy Technology Program

Outline

- Past, current and future Canadian Interests
- Science flowdown from 2013 Sapporo Workshop
- NRC-Herzberg Astronomy Technology Program Overview
- Thoughts on Subaru ULTIMATE

2005 Gemini GLAO Study – Modelling Results

Initial Modelling Results

Shows FWHM of percentile seeing – i.e. if you ask for 80% seeing you get 0.35 arcsec FWHM with GLAO instead of 0.65 arcsec.

- 'No more bad-seeing nights'
- But not as optimistic as Rigaut result

2005 Gemini GLAO Study – Modelling Results

Gains in R and J bands more modest, but still substantial

2005 Gemini GLAO Study – Modelling Results

Nevertheless, huge efficiency gains

- Calculations of exposure time ratios for background limited observations
 - Used the NIRI and GMOS ITCs
- Gains are more dramatic for poor seeing
 'A Third Gemini'

2005 Gemini GLAO Study – Derived Science Requirements

FOV: 50 arcmin2 requirement, 70 arcmin2 goal.

Wavelength range: 0.6-26µm (goal), 0.8-2.5µm (requirement).

Delivered image quality:

50% improvement in energy coupled to a 0.2" square IFU element in the H-band.

PSF FWHM ~0.35" in J band.

PSF uniformity and stability:

<10% variation in the energy coupled to a 0.1" square IFU element across a 10' FOV 'Smooth' FWHM variation <30 mas rms across the 10' FOV.

Field distortion: <50 mas distortion across the 10'

Distortion in system should be linear, calibratable and repeatable Uncalibratable distortion should be <1% of FWHM (requirement)

Emissivity: <6%.

Throughput: <10% decrease over the required wavelength range.

Sky Coverage: above 90%

Observing Efficiency: 75% open shutter time for imaging

Other Instruments: GMOS, Flamingos 2 and TRECS

Chopping and Dithering:

Requirement on dithering for closed loop AO NIR – 5 arcsec.

MIR needs chopping of 30 arcsec.

Subaru RAVEN

First ever
"sciencegrade" MOAO
observations
and a
wonderful
collaboration!

Gemini GIRMOS

- "Gemini InfraRed Multi-Object Field Spectrograph"
 - A TMT pathfinder instrument
 - PI: Suresh Sivanandam (Dunlap Institute/U. Toronto)
 - Collaborating institutes: U. Toronto, Dalhousie U., U. of Victoria, U. British Columbia and NRC
- Main parameters:
 - 1.0-2.4 μm (YJHK), R=3000
 - Four (or more) deployable IFUs over 1'.5 diameter patrol field
 - 50-100 mas spaxels w/ MOAO corrections
 - >50% EE in 100 mas at 1.6μm
- Proposal to be submitted to Canadian Foundation for Innovation (CFI) in September 2016. If successful, construction start in January 2018 and first-light in 2023

TMT GLAO

- GLAO analysis from 2006 WFOS-HIA Feasibility Study
- Basic architecture:
 - Adaptive secondary mirror w/ 43-58 actuators across 3.5-m pupil
 - 5 LGSs over an asterism diameter of 17 arcminutes
 - 4 NGS WFS

Figure 95 - The cumulative histograms of FWHM (left panel) and full width of 50% ensquared energy (EE50, right panel) for the baseline design at $0.6\mu m$ and zenith. The no-GLAO case is also plotted as the (dotted lines).

No "killer app" BUT:

- 25% shorter exposure times
- ASM provided common woofer to other TMT instruments

Sapporo 2013 Workshop - Science Flowdown

Subaru GLAO Science Flowdown									
/ersion: DRF01	Last Update: 13 June 2013								
			Spectral Parameters		Spatial Parame		ters	Depth	
Observing Program	Key Observables	Principal Investigator	Wavelength Range (filter/µm)	Spectral Resolution	Resolution (mas)	Pixel Sampling (mas)	PSF uniformity (%)	Flux Limit (mag or ergs /s /cm2	S/N
High-z bulges and disks		Okamoto			200	100			
Galaxy Evolution- NIR Imaging		Balogh		NB	200				
Galaxy Evolution - NIR Spec		Balogh		3000	200			2x10^-18	10
"Ultimate-MAHALO"	Halpha geometry survey across environments Galaxy stellar profiles	Koyama	ZYJHK	NB, BB	200	100			
High-z AGN host galaxies	Structural parameters	Schramm		a	200				
Galactic Center	Narrow-band photometry Astrometry	Nishiyama	К	NB	200	< 100		K~16	20
Diversity of Star/Planet Formation		Oasa	JHK	ВВ	200	100			
Exoplanetary science with MOS/GLAO	Transmission spectroscopy	Narita		9 (0)	200				
Enrichment History of Elements	Abundances and star formation rates	Yamada		20000	200				
Wide field view of nearby dwarfs	CMDs Faint substructures	McConnachie	JHK	ВВ	200	100 50		30 mag / sq"	
Probing GCs in the GC region with GLAO	CMDs	Chiba	JK	BB	200	100?		K~20 & J~22.5	
Globular clusters	CMDs IMBHs IR excesses around WDs in GCs	Richer/Venn			200				
First Star Relics in Galactic Center	3D kinematics (RV w/ proper motion)	Venn		BB 5000	200	< 100			
			_						

Sapporo 2013 Workshop - Science Flowdown

Subaru GLAO Science Flowdown Version: DRF01	10 0												
version: DRF01										100			
	Survey Field Geometry		Astrometry		Multiplexing		Synoptic Signature			Programme and the second			
Observing Program	_	FoV / observation (sq. arcmin.)	Contiguous FoV required?	Precision (mas)	Stability Timescale (years)	Total Sample Size	# objects / observation	Baseline (years)	Cadence (# observations / baseline)	Duration / observation (hours)	Tracking Rate (Sidereal = 1.00)	Comments (Synergy, competitiveness, instrument typetc.)	
High-z bulges and disks											1.00	Multi-IFU	
Galaxy Evolution- NIR Imaging	8										1.00		
Galaxy Evolution - NIR Spec		13.6 x 13.6				5500	>> 150			4	1.00	Multi-slit	
"Ultimate-MAHALO"		30'x30'				2000	100-200			18	1.00	MOS follow-up for cluster membership multi-IFU follow-up for internal kinematics	
High-z AGN host galaxies	1100										1.00		
Galactic Center	40'x40'		yes	40	4			4	100	0.017	1.00		
Diversity of Star/Planet Formation		10'x10'									1.00	Multi-slit IFU for jets	
Exoplanetary science with MOS/GLAO	2 2									2 8	1.00	Not a GLAO science case!	
Enrichment History of Elements											1.00		
Wide field view of nearby dwarfs		>= 10'x10'									1.00	Spectroscopy not required	
Probing GCs in the GC region with GLAO				,0 E				15 years?		2 8	1.00		
Globular clusters											1.00	Proper motion cleaning: 5 mas/yr especially important for open clusters	
First Star Relics in Galactic Center											1.00	Proper motion cleaning: 2 mas / yr Overcoming confusion is key	

Subaru ULTIMATE Imager Concept (J. Pazder, 2013)

- Adaptive Secondary Mirror + Concentric corrector providing a universal 22'.8 diameter field of view with residual aberrations less than 66 mas
- 4-barrel imaging system feed :
 - Each barrel has 4K×4K H4RG detector covering 6'.8×6'.8 FoV w/ 0''.1/pixel
 - Total imager FoV of 185 square arcminutes

NRC-H ATP Overview – Program Resources

Critical mass of human, infrastructure, and financial resources:

- 2 sites Victoria and Penticton, with well established special purpose laboratories
- ~60 staff engineers, scientists, technicians, and support staff – matrix organization
- Stable operations budget baseline, plus project funding
- Healthy collaborative framework, domestic and international, institutional and industry

ATP Overview – Projects and Collaborations

- Canada-France-Hawaii Telescope (Canada, France, Hawaii + new partners):
 - MegaPrime new broadband and narrowband filters
 - SPIRou high-resolution IR spectropolarimeter
 - NIRPS high-resolution IR spectrograph
 - Maunakea Spectroscopic Explorer (MSE)
- Gemini (US, Canada, Chile, Brazil, Argentina):
 - GRACES remote CFHT/Espadons fiber feed
 - GHOST high-resolution optical spectrograph (w/ AAO)
 - Gen4#3 new instrument
 - ALTAIR upgrades
- ALMA (US, Europe, Japan, Chile, Canada, Taiwan):
 - Band 3 upgrades and Band 1 components
 - Mm-Camera studies
 - Wideband correlator studies

ATP Overview – Projects and Collaborations (cont.)

- JWST (NASA, ESA, CSA):
 - FGS/NIRISS detectors, optics, mechanics support
- TMT (CIT, UC, ACURA, Japan, China, India):
 - NFIRAOS AO system + AO components
 - IRIS science instrument
- SKA (10+ countries):
 - Dish correlator
 - Feed digitizers
 - Cryogenic low noise amplifiers
- Next-generation VLA:
 - Composite dish antennas, feeds, correlator studies

ATP Overview – Precursors

Engaged in a range of exploratory projects on promising technologies for future projects

- Phased array feeds; room temp & cryogenic
- Low voltage deformable mirrors
- Zero read noise IR detectors
- Advanced wavefront sensors & reconstruction algorithms
- Dynamic mechanical modal analysis
- Integrated opto-mechanical modeling
- Segmented mirror control
- Fiber optics/photonics
- Monolithic microwave integrated circuits (MMICs)

Thoughts on Subaru ULTIMATE

- There are "infrastructure" investments that make sense no matter what path is taken:
 - New laser(s)
 - Adaptive secondary that would act as a "woofer" for <u>any</u> AO architecture
- Main conclusion from Sapporo 2013 workshop: Narrow-band, "wide-field" imaging is the best justification for GLAO on Subaru
 - Imager was preferred science instrument back then
 - Imager? d-IFUs? Answer should come from updated science case flowdown at this workshop
- Canada has a long-standing interest in a next-generation AO system on a 8-m class telescope
 - NRC ATP can make contributions to ULTIMATE to be discussed!

Thank you!

Luc Simard

Astronomer, Instrument Science Group Leader

Tel: 1-250-217-8973

Luc.Simard@nrc-cnrc.gc.ca

www.nrc-cnrc.gc.ca

