Spectroscopic census of ISM properties in high-z galaxies

Kimihiko Nakajima (ESO)

on behalf of the Large MOS survey WG of K. Tadaki, M. Hayashi, T. Shibuya, and M. Akiyama

Answers (to be explained)

- Q1: What do you think is the "KEY" science/observations for ULTIMATE in your research field?
- --> Chemical evolution of galaxies probed by gas temperature. Origin(s) of Ly α and Ly-Continuum photons escapes.
- Q2: Which instrument (WFC/MOS/IFU) do you think is 1st priority for ULTIMATE?
- --> MOS
- Q3: Do you have good science cases to be done with GLAO+MOIRCS during the period of ~2020-2023?
- --> We can substitute MOIRCS+AO and start to conduct follow-up observation if sensitivity and spectral resolution are comparable to those of MOSFIRE.
- Q4: Which survey design sounds best for you (see *survey_design.pdf*)?
- --> (D) ULTIMATE MOS spec. survey
- Q7: For those who are interested in spectrographs (IFUs or MOS): are you happy with our current specifications?
- --> Yes. Improved sensitivity by GLAO, medium spectral resolution (R~3000), and high multiplicity (~100) would be nice.

MOS Survey Design

K+H spectroscopy for 1.8x10⁴ z=2--5 galaxies over 3 deg² in 200 nights

- + LAEs and LBGs surveyed by HSC and identified by PFS
- + Mass-selected sample to probe massive galaxies

Evolution of chemical enrichment in galaxies

z=0.1 Mass-Metallicity relation determined by 53,000 SDSS galaxies

- + star-formation quenching, or downsizing
- + gas inflow, outflow
- + star-formation efficiency
- + gas fraction
- + ... etc.?

Higher-z MZR is needed to constrain Physics governing galaxy evolution

Evolution of chemical enrichment in galaxies

Higher-z galaxies are *observed to be* less chemically enriched

- + Actively star-forming galaxies are more dominant at high-z
 - Inflow of metal-poor gas?
 - Outflow of metal-rich gas?
- + More efficient star-formation?
- + ... etc.?

For definitive conclusion, we need...

- 1) Larger samples
- 2) Accurate metallicity estimate

Metallicity estimate based on gas temperature

Accurate metallicity is provided by gas temperature

- + [OIII]4363/[OIII]5007
- + OIII]1661,1665/[OIII]5007
- → Limited by the faintness.

 Only ~10 galaxies are reported at z>2 (e.g. Kojima+16)
- → Obtainable w/ PFS+ULTIMATE from several x100 z>2 galaxies (cf. Kakazu+07) up to Z<~0.5Zsun</p>

Improved metallicity diagnostics

Metallicity indicators of strong-line ratios need to be checked and

re-calibrated at high-z

- + (Low-Z) Temperature method
- + (high-Z) Photoionization model
- → Complementary Z estimators for galaxies w/o Te measurement

- → Also enable us to examine...
- Evolution of ionization state
- Change of ionizing radiation field

Dust extinction correction

Balmer line ratios provide amounts of dust reddening of ionized gas

- $+ H\alpha/H\beta$
- $+ Hy/H\beta$
- + $H\delta/H\beta$

Absolute SFR
Accurate line ratios (PFS+ULTIMATE)

- Stellar absorption underneath Balmer lines can be directly evaluated in composite spectra
- For galaxies w/o Balmer decrement measurements, stellar reddening might be useful for nebular reddening estimate, but the E(B-V)nebular vs. E(B-V)stellar relation needs to be re-established (e.g. Reddy+15)

ISM properties probed with ULTIMATE

Reliable metallicity will be provided at z>2 as functions of ...

- + Stellar-mass
- + SFR
- + Environment
- + Ionization state
- + Gas fraction
- + Etc.

Conclusive picture of evolution of chemical enrichment in galaxies

--> Physics governing galaxy evolution

ISM properties at Epoch of Reionization

Some galaxies at EoR could have ISM properties very differently

- + Extremely strong [OIII]+Hβ (EW~1500A)
 - Hardness of ionizing radiation field?
 - Ionization parameter?
 - Column density of HI gas?

JWST/NIRSpec will provide direct identification

ULTIMATE will enable us to fully examine the nature by observing lower-z(=2--4) counterparts

+ High-z Green pea galaxies (van der Wel+11, Kakazu+07, searched by WFC?) 5 0.5

+ Galaxies showing highest [OIII]/[OII] (Nakajima&Ouchi+14, Izotov+16)

+ LyC leaking galaxies (Iwata+09, Micheva+15, searched by CHORUS)

van der Wel+11

ULTIMATE can resolve 100°27′03 clumps showing LyC escape

22^h 16^m 52.7^s R.A. (I2000)

Micheva+15

Gas kinematics probed by FUV spectrum

PFS+ULTIMATE will explore outflowing gas kinematics & properties

- + Lyα emission spectral shape
- + Low ionization interstellar lines (LIS) in absorption
- + Velocity offsets

- + Outflow velocity: $v_{Ly\alpha}$ and v_{Lis}
- + Neutral hydrogen column density: N(HI)
- + Gas covering fraction: fc

(e.g. Hashimoto+13,15, Shibuya+14, Erb+14, Jones+13)

$\operatorname{High} f_c$ outflow

Low f_c outflow

(c) T. Shibuya

Origin(s) of Lyα and LyC photons escape

LAEs as Probe of Cosmic Reionization? Whose properties are ...

- + Less massive and actively SF than LBGs (e.g. Gawiser+06, Ono+10)
- + Small in size (Malhotra+12)
- + Less chemically enriched? (Finkelstein+12, Nakajima+13)
- + **Highly ionized?** (Nakajima&Ouchi 14, Erb+16)
- + Less dusty? (Kusakabe+15)
- + Comparable outflow velocity but Smaller N(HI)?
 (Hashimoto+13,15,Shibuya+14,Erb+14)
- + Smaller covering fraction ? (Jones+13), and Higher escape fraction of ionizing photons ? (Iwata+09, Nestor+13)

Interpret high-z JWST observations & Understand role of galaxies at EoR in supplying ionizing photons

Answers (summary)

- Q1: What do you think is the "KEY" science/observations for ULTIMATE in your research field?
- --> Chemical evolution of galaxies probed by gas temperature. Origin(s) of Ly α and Ly-Continuum photons escapes.
- Q2: Which instrument (WFC/MOS/IFU) do you think is 1st priority for ULTIMATE?

 --> MOS
- Q3: Do you have good science cases to be done with GLAO+MOIRCS during the period of ~2020-2023?
- --> We can substitute MOIRCS+AO and start to conduct follow-up observation if sensitivity and spectral resolution are comparable to those of MOSFIRE.
- Q4: Which survey design sounds best for you (see *survey_design.pdf*)?
- --> (D) ULTIMATE MOS spec. survey
- Q7: For those who are interested in spectrographs (IFUs or MOS): are you happy with our current specifications?
- --> Yes. Improved sensitivity by GLAO, medium spectral resolution (R~3000), and high multiplicity (~100) would be nice.