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SCEXAO modules

The wavefront control feeds a high Strehl PSF to various modules, from 600 nm to K band.

Visible (600 — 950 nm):

VAMPIRES, non-redundant masking, polarimetry, soon H-alpha imaging capability

FIRST, non-redundant remapping interferometer, spectroscopic analysis

RHEA, single mode iber injection, high-res spectroscopy, high-spatial resolution on resolved stars

IR (950-2400 nm):

HiCIAO, high contrast imager, y to K-band

SAPHIRA, high-speed photon counting imager, H-band (for now)

CHARIS, IFS (J to K-band), just delivered! Commissioning run in July 2016

MEC, MKID detector, high-speed energy discriminating photon counting imager (y to J-band), delivery in early 2017
NIR single mode injection, high throughput high resolution spectroscopy. Soon will be connected to the new IRD
NULLER - GLINT



Wavefront sensing:

* Non-modulated pyramid WFS
(VIS)

* Coronagraphic low order
wavefront sensor (IR) for non-
common tip/tilt errors

* Near-IR speckle control
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CHARIS

Near-IR InGaAs cameras
- to be replaced with El
technology

SAPHIRA




Where is SCEXAO heading ?

Spectroscopic characterization of Earth-sized planets with TMT
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4 ; A=1600nm A=1600nm rocky planets in habitable zone
DY SwRIm _ — could be imaged and their
D= :30m D . 8m spectra acquired
[ assumes 1le-8 contrast limit, 1
IID IWA ]
g o
M-type stars
- 1B ok ) K-type and nearest G-type stars
are more challenging, but could
be accessible if raw contrast can
be pushed to ~1e-7 (models tell
-8 2% us it's possible)
log10 contrast . ©
9
w g o o
. i o ;
-10 | a3 7 thpe stars O
1 Ré rocky planets ih HZ for 'f-f I I8 K- O
2 stars within 30pc (6041 stars) I A o S A 5 §

" F-type stars

) ' — -

N Angular separation (log10 arcsec) o

Log Sepm%ticr [arcsec]



TMT system architecture with
iInstrumentation

INSTRUMENTATION

High-res spectroscopy can

Visible light Near-IR detect molecular species and

Imaging, Imaging, separate speckles from planet
Thermal IR spectroscopy, spectroscopy, spectra
Imaging & polarimetry, polarimetry
spectroscopy coronagraphy
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ASM & Exoplanet Instrumentation

[1] ASM can be step #1 of Multi-step correction for ExXAO
Very helpful to have ASM, but not essential (internal DM is nearly as good)

[2] ASM enables long wavelength Exoplanet imaging & spectroscopy
ASM is essential to long wavelength sensitivity
But window of opportunity will close in TMT era: difficult to make up for aperture size

[3] Multi-object RV
FOV is likely too small to be competitive, except for clusters

[4] Astrometry
Dense field + sharp PSF
Multi-wavelength concept



[1] ASM as step #1 of multi-DM ExXAO system

Extreme-AQO systems use multiple correction steps to achieve high contrast:
Step #1. Achieve diffraction limit in wavefront sensor (usually visible light)
- WEFS runs in diffraction-limit sensitivity regime
- (D/r0)*2 WES sensitivity gain

Step #2: High contrast speckle control running in linear regime

Step #1 may require woofer + tweeter architecture

ASM is well-suited for step #1 correction, alone or with a tweeter (MEMS)




TMT system architecture with instrumentation

INSTRUMENTATION
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SCEXAO @ Subaru (2017)

INSTRUMENTATION
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[2] Thermal imaging of exoplanets with ASM

3-10um imaging of exoplanet is largely background-limited
With ASM, only 2 (Cass) or 3 (Nas) reflections

LBTAO/PISCES H-band LBTAO/LMIRCam 3.3 pym

OC

Fig. 1.— LBT First Light AO images of the HR 8799 planetary system at H-band and
3.3um. These images comprise the first detection of HR 8799 e at either wavelength, and
the first unambiguous detections of HR 8799 b and d at 3.3um.
’ S ’ . Skemer et al. 2012
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Fig. 8 — Same as Figure[d (top) but for HR 8799 ¢ and d. As was found for HR 8799 b, our
non-equilbrium chemistry models are unable to fit the 3.3um-L’ colors of HR 8799 ¢ and d.



[3] Wide field multi-object Radial Velocity

High precision RV has so far been limited to single objects

Multi-object RV could be done in open clusters with a few arcmin FOV to probe
exoplanet population around young stars

Large aperture is required for sensitivity
Simultaneous multi-object RV is mitigates telluric absorpion “noise” (common to all

sources in field)

AQ correction is key :
AO fiber-fed (single mode) spectrographs can be very compact and stable



RHEA: Replicable High-resolution Exoplanet &
Asteroseismology (M. Ireland & C. Shwab)

The main specifications of RHEA @Subaru are:

Spatial Resolution

Spectral Resolution

Total Field of View
Instantaneous Field of View
IFU Elements

Spectrograph Total Efficiency
Injection Unit Efficiency
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Fiber feed

Echelle grating in
vacuum chamber

Figure 2. An image of the RHEA spectrograph deployed at Sub-
aru Telescope (Feger et al. 2016; Rains et al. 2016). (Top) The
3D CAD rendering including the light rays (in red). (Bottom) An
as-built image of the instrument. For a sense of scale the instru-
ment is sitting on a standard breadboard with 25 mm hole spacing.
Credit: T. Feger, Macquarie University.
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Figure 3. (Left) Schematic of the key components of an AWG.
(Right) Microscope image of the a section of the array of waveg-
uides for a typical AWG device.

(Top) An AWG directly bonded to an integrated PL.
(Bottom) AWG in a low resolution cross-dispersed setup. VPH -



[4] Astrometry

Astrometry detects the gravitational pull of exoplanets on their host stars
CHALLENGE: Earth analog is ~1 uas signal around nearby star

— Need sharp PSF, collecting area (photons) and exquisite calibration

Noise sources:

Telescope optics induce distortions
ASM allows 2-mirror system, one of which (primary) is irrelevant
ASM position knowledge predicts telescope distortion

Atmospheric turbulence creates distortions
Very large effect, but has very specific and known chromaticity
- multi-wavelength observation (simultaneous) + time averaging

Both noise sources create a smooth distortion map, which can be measured
accurately with a dense starfield image



Habitable Zones within 5 pc (16 ly):
Astrometry and RV Signal Amplitudes for Earth Analogs
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Conclusions

ASM :

[1] Will be Helpful but not essential to near-
IR and visible ExAO Not competitive with ELTs

[2] Is Essential for thermal IR exoplanet
Imaging

[3] Enables multi-object fiber-fed RV

i Unique capabilities in ELTs era
Instrument

Strong potential for non-
exoplanet science

[4] Enables unique astrometric capability




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

