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SCExAO modules

The wavefront control feeds a high Strehl PSF to various modules, from 600 nm to K band.

 

Visible (600 – 950 nm):

 VAMPIRES, non-redundant masking, polarimetry, soon H-alpha imaging capability

 FIRST, non-redundant remapping interferometer, spectroscopic analysis

 RHEA, single mode iber injection, high-res spectroscopy, high-spatial resolution on resolved stars

IR (950-2400 nm):

 HiCIAO, high contrast imager, y to K-band

 SAPHIRA, high-speed photon counting imager, H-band (for now)

 CHARIS, IFS (J to K-band), just delivered! Commissioning run in July 2016

 MEC, MKID detector, high-speed energy discriminating photon counting imager (y to J-band), delivery in early 2017

 NIR single mode injection, high throughput high resolution spectroscopy. Soon will be connected to the new IRD

 NULLER → GLINT



  

Wavefront sensing:
 Non-modulated pyramid WFS 

(VIS)
 Coronagraphic low order 

wavefront sensor (IR) for non-
common tip/tilt errors

 Near-IR speckle control

2k MEMS DM

 
Numerous coronagraphs – PIAA, 
Vector Vortex, 4QPM, 8OPM, 
shaped pupil (IR)

Broadband diffraction limited 
internal cal. Source + phase 
turbulence simulator



  



  

SCExAO near-IR bench, End 2016

SAPHIRA

HiCIAO → MKIDS

CHARIS

Near-IR InGaAs cameras
→ to be replaced with EI 
technology
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λ=1600nm
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1 Re rocky planets in HZ for 
stars within 30pc (6041 stars)

Where is SCExAO heading ?
Spectroscopic characterization of  Earth-sized planets with TMT

M-type stars

G-type stars

K-type stars

F-type stars

Angular separation (log10 arcsec)

log10 contrast

Around about 50 stars (M type), 
rocky planets in habitable zone 
could be imaged and their 
spectra acquired
[ assumes 1e-8 contrast limit, 1 
l/D IWA ]  

K-type and nearest G-type stars 
are more challenging, but could 
be accessible if raw contrast can 
be pushed to ~1e-7 (models tell 
us it's possible)



  

TMT system architecture with 
instrumentation
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spectra  

INSTRUMENTATION



  

ASM & Exoplanet Instrumentation

[1] ASM can be step #1 of Multi-step correction for ExAO
Very helpful to have ASM, but not essential (internal DM is nearly as good)

[2] ASM enables long wavelength Exoplanet imaging & spectroscopy
ASM is essential to long wavelength sensitivity
But window of opportunity will close in TMT era: difficult to make up for aperture size

[3]  Multi-object RV
FOV is likely too small to be competitive, except for clusters

[4] Astrometry
Dense field + sharp PSF 
Multi-wavelength concept



  

[1] ASM as step #1 of multi-DM ExAO system

Extreme-AO systems use multiple correction steps to achieve high contrast:

Step #1: Achieve diffraction limit in wavefront sensor (usually visible light)
→ WFS runs in diffraction-limit sensitivity regime
→ (D/r0)^2 WFS sensitivity gain

Step #2: High contrast speckle control running in linear regime

Step #1 may require woofer + tweeter architecture

ASM is well-suited for step #1 correction, alone or with a tweeter (MEMS)



  

TMT system architecture with instrumentation
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SCExAO @ Subaru (2017)
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[2] Thermal imaging of exoplanets with ASM

3-10um imaging of exoplanet is largely background-limited
With ASM, only 2 (Cass) or 3 (Nas) reflections

Skemer et al. 2012



  
Courtesy of Andy Skemer



  



  

[3] Wide field multi-object Radial Velocity

High precision RV has so far been limited to single objects

Multi-object RV could be done in open clusters with a few arcmin FOV to probe 
exoplanet population around young stars

Large aperture is required for sensitivity
Simultaneous multi-object RV is mitigates telluric absorpion “noise” (common to all 
sources in field)

AO correction is key :
AO fiber-fed (single mode) spectrographs can be very compact and stable



  

RHEA: Replicable High-resolution Exoplanet & 
Asteroseismology (M. Ireland & C. Shwab)

RHEA first light @ Subaru: Eps Vir (detail)
Feb 2016



  



  

Near-IR photonic 
spectrograph @ 
SCExAO

(Jovanovic et al.)



  

[4] Astrometry

Astrometry detects the gravitational pull of exoplanets on their host stars
CHALLENGE: Earth analog is ~1 uas signal around nearby star

→ Need sharp PSF, collecting area (photons) and exquisite calibration 

Noise sources:

Telescope optics induce distortions
ASM allows 2-mirror system, one of which (primary) is irrelevant
ASM position knowledge predicts telescope distortion

Atmospheric turbulence creates distortions
Very large effect, but has very specific and known chromaticity
→ multi-wavelength observation (simultaneous) + time averaging

Both noise sources create a smooth distortion map, which can be measured 
accurately with a dense starfield image



Star Temperature [K]

Habitable Zones within 5 pc (16 ly): 
Astrometry and RV Signal Amplitudes for Earth Analogs

Circle diameter is proportional to 1/distance 

Circle color indicates stellar temperature (see scale right 
of figure)

Astrometry and RV amplitudes are given for an Earth 
analog receiving the same stellar flux as Earth receives 
from Sun (reflected light)

α Cen B

α Cen A

Proxima Cen

Barnard's star

Sirius

Procyon A

CN Leonis

Eps Eri

Expected detection 
limit for space 

astrometry (NEAT, 
THEIA, STEP)

F, G, K stars

Expected detection limit for near-IR RV 
surveys (SPIROU, IRD + others)
M-type stars

Detection limit 
for ground-based 

optical RV 
F, G, K stars



  

Conclusions

ASM :

[1] Will be Helpful but not essential to near-
IR and visible ExAO

[2] Is Essential for thermal IR exoplanet 
imaging

[3] Enables multi-object fiber-fed RV 
instrument

[4] Enables unique astrometric capability

 

Not competitive with ELTs

Unique capabilities in ELTs era

Strong potential for non-
exoplanet science
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