Review of recent studies for galaxies at z=1-3

Ken-ichi Tadaki (NAOJ)

Introduction

Extended clumpy disks and nuggets

Extended clumpy disk

Results from IFU studies of high-redshift SFGs

Genzel+11

Results from CO studies of high-redshift SFGs

Tacconi+13

Differences between high-z and low-z galaxies

	high-z	low-z
SFR	~ 100 M _{sun} /yr	<10 M _{sun} /yr
gas fraction	40-50 %	10%
gas depletion time-scale	~700 Myr	1-2 Gyr
morphology	clumpy disk	spiral disk
velocity dispersion	~50 km/s	~10 km/s

Differences between high-z and low-z galaxies

	high-z	low-z
SFR	~ 100 M _{sun} /yr	<10 M _{sun} /yr
gas fraction	40-50 %	10%
gas depletion time-scale	~700 Myr	1-2 Gyr
morphology	clumpy disk	spiral disk
velocity dispersion	~50 km/s	~10 km/s

the main driver of large velocity dispersion is not well understood

1. stellar feedback (outflow)

2. self-regulating disk (inflow within disk)

Self-regulated disks

high-redshift galaxies keep a disk unstable (Q~1)

Blue/red nuggets

Blue/red nuggets

depends on gas fraction!

a theoretical study predicts that about 50% of high-z SFGs are expected to contract to blue nuggets

Blue/red nuggets

Two evolutionary paths for QGs

1. fast/early-track: extended clumpy disks \rightarrow blue/red nuggets \rightarrow massive QGs 2. slow/late-track: extended clumpy disks \rightarrow massive disks \rightarrow massive QGs

Next agenda

2003-2013

sample number

Observations with SINFONI, IRAM-PdBI, HST/WFC3 revealed the detailed properties of high-z galaxies and 50-100 predicted the formation scenarios of massive galaxies

2013-2020

Observations with KMOS and ALMA will provide a comprehensive view of the predicted scenarios

500-1000

what are we to do by using ULTIMATE-Subaru?

wide-field imager

 \rightarrow statistical study of nuggets

IFU

 \rightarrow statistical study of population before nugget phase

Population before nugget phase

why is dispersion dominated?

gas inflow is efficient? candidates of nuggets?

Population before nugget phase

Beam smearing effect

Newman et al. 2013

KMOS GTO programs (only high-z)

to my knowledge...

- KMOS^{3D} (PI: Förster Schreiber)
- KMOS Kinematic Survey (PI: Sharples)
- KMOS Deep Survey (PI: Cirasuolo)
- KMOS clusters program (PI: Bender/Davies)
- VIRIAL (PI: Mendel)

and so on.

	KMOS	ULTIMATE with GLAO	SINFONI with AO
spatial resolution	~0.6″	?	0.1-0.2″
multiplicity	24	?	1
sample size of large survey	500-1000	?	30-40

star-forming

passive

3D-HST sample in CANDELS field

Selection	N (Total) in five CANDELS field	N/13.6′FoV
0.7 < z < 1.5, logM∗ > 10	3115 galaxies	~300
F _{Hα} > 8e-17	636 galaxies	60-80

If we target mass-complete sample, 52 are reasonable.

If we target only SFGs with strong Hα emission, 26 or 52 bundles are reasonable.

Note that these are targets of KMOS^{3D} project. KMOS: $F_{H\alpha} > 8e-17$ ULTIMATE-Subaru: $F_{H\alpha} > 4e-17$? It depends on the capability of ULTIMATE-Subaru.

Progenitors of Milky way-like galaxies

Summary

straightforward strategy with ULTIMATE-Subaru

- 1. update the bottom panel for targeting the mass-complete sample
- 2. investigate the properties (σ , V_{rot} , Q) in multi-parameter spaces
- (stellar/dynamical mass, SFR, redshift, environment...)
- 3. provide a comprehensive view of the formation scenario of massive galaxies

My answers about specifications

I'm not sure...

NBH-UDS-4 F125 F160 F606 F814 NBH-UDS-5 3"×3" F125 F160 F606 F814 NBH-UDS-6 ←SFGs at z~1.5 (Sobral et al. 2013) F160 F125 F606 F814

alaxies with F_{line}=(4-8)e-17 and source