NEARBY GALAXY OBSERVATIONS -- SYNERGIES WITH ALMA --

Daisuke Iono (NAOJ)

Refereed ALMA publications (total: 126)

Science cases for nearby extra-galactic studies?

1. (In- and Out-) Flows

2. Merging Galaxies

AGN in/out-flows

Gas inflow:
Feeing the AGN

Gas outflow:

Expelling material and provide feedback

Jets ~ > kpc scale

Circum-Nuclear Disk~<0.1-1 pc scale Torus ~ pc scale

Mass accretion onto the black hole

Large (> kpc) scales

- Mergers
- Bars in isolated galaxies

$10-1000$ pc scales

- Gas inflow due to nested bars
- Resonances

1-10 pc scales

- Potential dominated by BH
- Forming $m=1$ type spiral mode
- Inflow rate of 1-10 $\mathrm{M}_{\text {sun }} / \mathrm{yr}$

Hopkins \& Quataert (2010, MN, 407, 1529)

Starburst winds/outflows

M82

(Smithsonian Institution/Chandra X-ray Observatory)

- Ubiquitous in SB galaxies with $\sim 0.1 \mathrm{M}_{\text {sun }} / \mathrm{yr} / \mathrm{kpc}^{2}$
- Expansion along minor axis
- Multi-phase: hot (x-ray), ionized (H alpha) and cold (molecular)

Mass loss and feedback (quenching star formation)

NGC 253 - evidence of outflow

Starburst galaxy with outflows seen in ionized gas (low luminosity BH is not the dominant source).

The CO(1-0) (beam=3.2") outflow coincides with the Ha outflow.

Outflow mass: ~ $6.6 \times 10^{6} \mathrm{M}_{\text {sun }}$ Outflow rate: $9 \mathrm{M}_{\text {sun }} / \mathrm{yr}$ SFR : ~ $3 \mathrm{M}_{\text {sun }} / \mathrm{yr}$

Starburst driven wind is limiting the star formation activity

NGC 1097 - evidence of inflow

AGN and SB ring

HST

Used HCN(4-3) velocity field to model the gas kinematics associated with the AGN. Found non-circular motion with gas mass inflow of $0.1-0.6 \mathrm{M}_{\text {sun }} / \mathrm{yr}$, feeding the central blackhole.

Fathi et al. 2013

NGC 1433 - evidence of outflow

Combes et al. 2014

Barred spiral galaxy with a Seyfert 2 nucleus

Molecular outflow
$\mathrm{M} \sim 3.6 \times 10^{6} \mathrm{M}_{\text {sun }}$ Rate $\sim 7 \mathrm{M}_{\text {sun }} / \mathrm{yr}$

Subtraction of the rotation (from $/ 4 \alpha$)

${ }^{5}$ Minor axis position (arcsec)

NGC 1068 - inflow(?) and outflow

- 14.4 Mpc (1 " = 72 pc)
- AGN (Seyfert 2) + Starburst ring (diameter = 30")

NGC 1068 - inflow(?) and outflow

Detect a circum-nuclear disk (350 pc in size)

$\mathrm{CO}(3-2)$ is abundant, tracing the extended/ring SF, whereas dense gas tracers such as $\mathrm{CO}(6-5), \mathrm{HCN}(4-3), \mathrm{HCO}+(4-3), \mathrm{CS}(7-6)$ are only detected in the nuclear disk.

Garcia-Burillo et al. (2014)

NGC 1068 - inflow(?) and outflow

Residual velocity after subtracting the best fit rotation model.

Significant non-circular motion is present -> which may be caused by the bar

NGC 1068 - inflow(?) and outflow

High velocity component seen at small ($\sim 100 \mathrm{pc}$) scales

Signature of outflow

Galaxy Mergers

1. Gas outflow
2. K-S Law and mergers
3. Morphological evolution

Galaxy Interactions and Mergers

Galaxy mergers play important roles in the formation and evolution of galaxies, as illustrated by the increasing galaxy merger rate at higher redshifts (e.g., Lin+04, Bundy+09).

NGC 3256 - mergers and outflows

$\mathrm{CO}(3-2)$ integrated intensity

Sakamoto et al. (2014)
Position Velocity Diagram

Bipolar outflow from both galaxies
Both > 50-60 $\mathrm{M}_{\text {sun }} / \mathrm{yr}$

NGC 3256 - mergers and outflows

Sakamoto et al. (2014)

K-S Law and Merging Galaxies

Daddi et al. (2010)

ALMA observation of a merging LIRG VV114

 HST

ALMA CO(1-0); Saito et al. in prep

Spatially Resolved K-S Law

Morphological Evolution

Formation of an extended gas disk

- Stars: Violent relaxation -> Spheroidal component
- Gas: Nuclear/Extended star formation

The distribution of stars vs. gas in a merger remnant (Springel \& Hemquist+05)

Sample of Merger Remnants

K-band images of 37 merger remnant sample

(Images: Rothberg \& Joseph 2004)
Our sample is drawn from the optically-selected merger remnant sample (Rothberg \& Joseph 2004) according to the following criteria:

1. Optical morphology (tidal tails, loops, and shells)
2. Single nucleus
3. The absence of nearby companion

Cold Molecular Gas in Merger Remnants

(Ueda et al. 2014)

UGC 8058

NGC 828
AM 2246-490
NGC 1614

Rotation-dominated
NGC 2623

UGC 5101
NGC 3256

NGC 7252

Arp 187
AM 2038-382

Arp 230

AM 0956-282

UGC 6
NGC 2782

AM 1158-333

UGC 2238

NGC 6052

AM 1255-430

Results and Implications

- 54% of the sources have smaller gas disks than the Kband effective radius
- Candidates for early type galaxy
- 46% of the sources have larger gas disks than the K-band effective radius
- Candidates for late type galaxy with stellar bulge

Teyssier et al. (2010)

Dekel et al. (2009)

Results and Implications

Kinematics alone is not sufficient to tell if these high-z galaxies are quiescent disks (favoring cold accretion) or mergers.

Future of ALMA and Synergies with Subaru in the 2020's

Subaru - ALMA Synergy

Cold molecular gas

Alatalo et al. (2013)

Warm/ionized gas

Krajnović et al. (2011)

ALMA in 2020 and beyond

-0.01" resolution realized (currently $\sim 0.1^{\prime \prime}$)

- Point source sensitivity improved by 50% (with Full ALMA)
- (almost) all frequency bands available from 35 GHz 900 GHz
- VLBI and solar observations
- Future development (2020-2030)
- Multi-beam receiver (Increase the FOV)
- Longer baselines (even higher angular resolution)
- Better correlator
- Wider bandwidth

ALMA FOV

Band	Frequency [GHz]	Wavelength [mm]	FOV [arcsec]
3	$84-116$	$2.6-3.6$	$\sim 52^{\prime \prime}$
4	$125-163$	$1.8-2.4$	$\sim 32^{\prime \prime}$
6	$211-275$	$1.1-2.4$	$\sim 21^{\prime \prime}$
7	$275-373$	$0.80-1.09$	$\sim 17^{\prime \prime}$
8	$385-500$	$0.60-0.78$	$\sim 11^{\prime \prime}$
9	$602-720$	$0.42-0.50$	$\sim 8^{\prime \prime}$
10	$787-950$	$0.32-0.38$	$\sim 6^{\prime \prime}$

Requirements for IFU

M33

- Nearby galaxies are very large (1-10s of arcmin)
- 880 ALMA pointings (Nyquist @ 100 GHz) to cover 14×14 arcmin
- Both ALMA and Subaru/IFU will not be ideal for a large scale kinematical mapping of large galaxies

Requirements for IFU

- Focus on nuclear regions of nearby galaxies ($1-10$ " scale) or compact U/LIRGs (~<60" scales)
- Nuclear inflow/outflow kinematics of cold gas (ALMA) and ionized/warm gas (Subaru)
- Comparable FOV (6-11") at high frequency ALMA bands (> 400 GHz).

VV114

NGC3256

NGC1068

HI kinematics with SKA (2020 -)

Summary

- ALMA producing new results
- Inflow, outflows in SB and AGNs
- Merging galaxies (K-S law, Morphology, outflows)
- and a lot more!
- ALMA in the 2020s
- 0.01" resolution
- All frequency bands (cold gas to warm/dense gas)
- FOV will still be a problem unless we implement a multi-beam receiver
- Subaru-ALMA synergies in the 2020s
- Kinematics of cold and warm/ionized gas
- FOV of Subaru/IFU and high frequency ALMA bands are comparable
- Wide area IFU will be complementary to future development of ALMA

