NEARBY GALAXY OBSERVATIONS -- SYNERGIES WITH ALMA --

Daisuke Iono (NAOJ)

Science cases for nearby extra-galactic studies?

1. (In- and Out-) Flows

2. Merging Galaxies

AGN in/out-flows

Gas inflow: Feeing the AGN

Circum-Nuclear Disk $\sim < 0.1 - 1$ pc scale Torus \sim pc scale

Gas outflow:

Expelling material and provide feedback

Jets ~ > kpc scale

Mass accretion onto the black hole

Galaxy-Scale Simulation:

Intermediate-Scale Re-Simulation:

Nuclear-Scale Re-Simulation:

Hopkins & Quataert (2010, MN, 407, 1529)

Large (> kpc) scales

- Mergers
- Bars in isolated galaxies

<u>10 – 1000 pc scales</u>

- Gas inflow due to nested bars
- Resonances

1-10 pc scales

- Potential dominated by BH
- Forming m = 1 type spiral mode
- Inflow rate of 1- 10 M_{sun}/yr

Starburst winds/outflows

M82 (Smithsonian Institution/Chandra X-ray Observatory)

- Ubiquitous in SB galaxies with ~ 0.1 M_{sun}/yr/kpc²
- Expansion along minor axis
- Multi-phase: hot (x-ray), ionized (H alpha) and cold (molecular)

Mass loss and feedback (quenching star formation)

NGC 253 – evidence of outflow

Starburst galaxy with outflows seen in ionized gas (low luminosity BH is not the dominant source).

The CO(1-0) (beam=3.2") outflow coincides with the H α outflow.

Outflow mass: ~ 6.6 x $10^6 M_{sun}$ Outflow rate: 9 M_{sun}/yr SFR : ~ 3 M_{sun}/yr

Outflow rate > SFR

Starburst driven wind is limiting the star formation activity

Bolatto et al. 2013

NGC 1097 – evidence of inflow

<section-header>

Used HCN(4-3) velocity field to model the gas kinematics associated with the AGN. Found non-circular motion with gas mass inflow of $0.1 - 0.6 M_{sun}/yr$, feeding the central blackhole.

HST

Fathi et al. 2013

NGC 1433 – evidence of outflow Combes et al. 2014

- 14.4 Mpc (1" = 72 pc)
- AGN (Seyfert 2) + Starburst ring (diameter = 30")

CO(3-2) is abundant, tracing the extended/ring SF, whereas dense gas tracers such as CO(6-5), HCN(4-3), HCO+(4-3), CS(7-6) are only detected in the nuclear disk.

Garcia-Burillo et al. (2014)

Residual velocity after subtracting the best fit rotation model.

Significant non-circular motion is present -> which may be caused by the bar

High velocity component seen at small (~100 pc) scales

Signature of outflow

Galaxy Mergers

- 1. Gas outflow
- 2. K-S Law and mergers
- 3. Morphological evolution

Galaxy Interactions and Mergers

Galaxy mergers play important roles in the formation and evolution of galaxies, as illustrated by the increasing galaxy merger rate at higher redshifts (*e.g., Lin+04, Bundy+09*).

NGC 3256 – mergers and outflows

Sakamoto et al. (2014)

NGC 3256 – mergers and outflows

Sakamoto et al. (2014)

K-S Law and Merging Galaxies

ALMA observation of a merging LIRG VV114

HST

Tateuchi et al.

ALMA CO(1-0); Saito et al. in prep

Spatially Resolved K-S Law

Morphological Evolution

Formation of an extended gas disk

- Stars: Violent relaxation -> Spheroidal component
- Gas: Nuclear/Extended star formation

The distribution of stars vs. gas in a merger remnant (*Springel & Hernquist+05*)

Sample of Merger Remnants

K-band images of 37 merger remnant sample

(Images: Rothberg & Joseph 2004)

Our sample is drawn from the *optically-selected* merger remnant sample (Rothberg & Joseph 2004) according to the following criteria:

- 1. Optical morphology (tidal tails, loops, and shells)
- 2. Single nucleus
- 3. The absence of nearby companion

Reference: NGC 1614, NGC 2623, UGC 5101, UGC 8058, Arp 193 (Wilson et al. 2008); NGC 2782 (Hunt et al. 2008); NGC 4441 (Jütte et al. (2010); other sources (Ueda et al. 2014)

Results and Implications

 54% of the sources have smaller gas disks than the Kband effective radius

Candidates for early type galaxy

- 46% of the sources have larger gas disks than the K-band effective radius
 - Candidates for late type galaxy with stellar bulge

Teyssier et al. (2010)

Dekel et al. (2009)

Results and Implications

Kinematics alone is not sufficient to tell if these high-z galaxies are **<u>quiescent disks</u>** (favoring cold accretion) or <u>mergers</u>.

Future of ALMA and Synergies with Subaru in the 2020's

Subaru – ALMA Synergy

Cold molecular gas

Warm/ionized gas

Alatalo et al. (2013)

Results from ATLAS3D

ALMA in 2020 and beyond

- 0.01" resolution realized (currently ~0.1")
- Point source sensitivity improved by 50% (with Full ALMA)
- (almost) all frequency bands available from 35 GHz 900 GHz
- VLBI and solar observations
- Future development (2020-2030)
 - Multi-beam receiver (Increase the FOV)
 - Longer baselines (even higher angular resolution)
 - Better correlator
 - Wider bandwidth

ALMA FOV

Band	Frequency [GHz]	Wavelength [mm]	FOV [arcsec]
3	84 - 116	2.6 – 3.6	~52"
4	125 - 163	1.8 – 2.4	~32"
6	211 – 275	1.1 – 2.4	~21"
7	275 – 373	0.80 – 1.09	~17"
8	385 – 500	0.60 - 0.78	~11"
9	602 - 720	0.42 - 0.50	~8"
10	787 – 950	0.32 – 0.38	~6"

Requirements for IFU

- Nearby galaxies are very large (1-10s of arcmin)
- 880 ALMA pointings (Nyquist @ 100GHz) to cover 14 x 14 arcmin
- Both ALMA and Subaru/IFU will not be ideal for a large scale kinematical mapping of large galaxies

M33

Requirements for IFU

- Focus on nuclear regions of nearby galaxies (1 – 10" scale) or compact U/LIRGs (~< 60" scales)
- Nuclear inflow/outflow kinematics of cold gas (ALMA) and ionized/warm gas (Subaru)
- Comparable FOV (6 11") at high frequency ALMA bands (> 400 GHz).

NGC1068

HI kinematics with SKA (2020 -)

21 cm HI Distribution

Summary

ALMA producing new results

- Inflow, outflows in SB and AGNs
- Merging galaxies (K-S law, Morphology, outflows)
- and a lot more!

<u>ALMA in the 2020s</u>

- 0.01" resolution
- All frequency bands (cold gas to warm/dense gas)
- FOV will still be a problem unless we implement a multi-beam receiver
- Subaru-ALMA synergies in the 2020s
 - Kinematics of cold and warm/ionized gas
 - FOV of Subaru/IFU and high frequency ALMA bands are comparable
 - Wide area IFU will be complementary to future development of ALMA