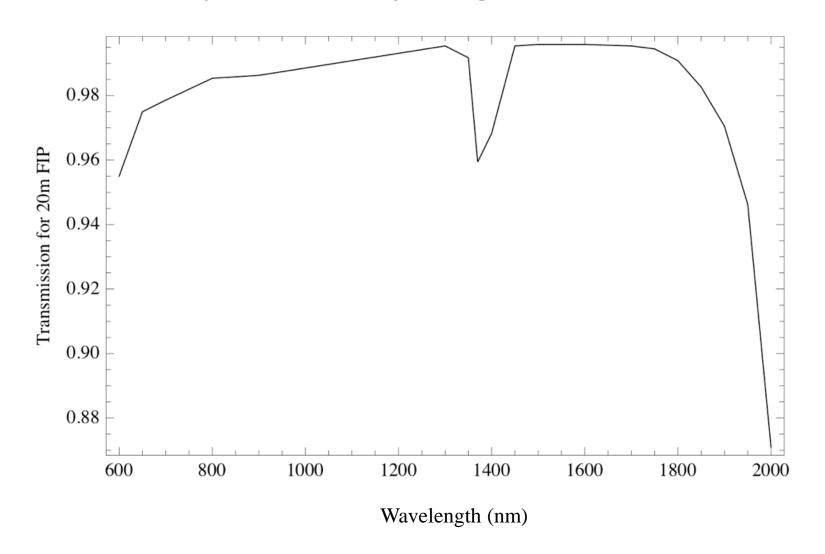
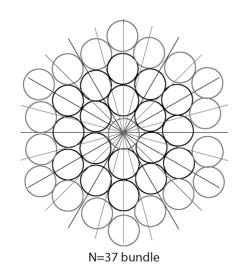
GLAO instrument specifications and sensitivities

Yosuke Minowa

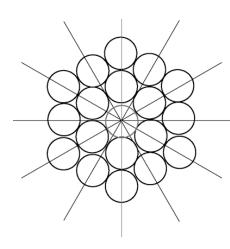

Simulated instruments as of 2013

- Wide Field NIR imaging
 - Broad-band (BB) imaging
 - Narrow-band (NB) imaging
- Multi-Object Slit (MOS) spectroscopy
 - Emission line
 - Continuum
- KMOS type Multi-IFU spectroscopy
 - Emission line

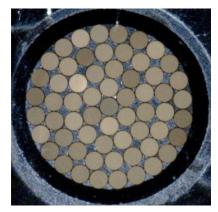
New Instrument Plan


- Multi-object fiber IFU spectrograph
 - Fiber-bundle IFU system
 - Utilize "Starbugs" developed by AAO
 - Each bundle consists of 37, 19, 61 fibers within ϕ ~1.4, 1.0, 1.8 arcsec FOV.arcminute² FOV.
 - Each fiber has 0.2 arcsec diameter.

Fibre throughput model fibre only, no coupling losses or FRD


Fibre Bundle Configuration (1)

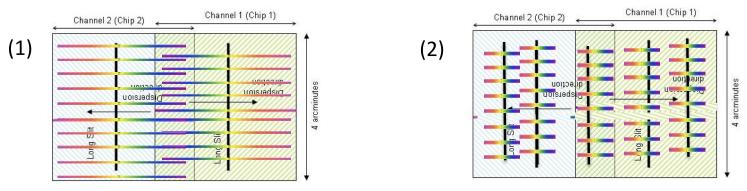
Number of fibres	37 (7 fibres on an axis)		
Spatial sampling	0.2 arcsec / fibre		
Bundle sky diameter	1.4 arcsec (point to pint)		
Number of detector pixels per fiber	4		
Number of pixels per bundle	148		
Number of bundles per 2k detector	13 (1924 pixels; plus sky fibers?)		
Object Multiplicity (MOIRCS)	26		
Sky Fibres/detector	30 sky fibres with 1 fibre gap		


Fibre Bundle Configuration (2)

Number of fibres	19 (5 fibres on an axis)	
Spatial sampling	0.2 arcsec / fibre	
Bundle sky diameter	1.0 arcsec (point to pint)	
Number of detector pixels per fiber	4	
Number of pixels per bundle	76	
Number of bundles per 2k detector	26 (1976 pixels; plus sky fibers?)	
Object Multiplicity (MOIRCS)	52 (feasible??)	
Sky fibres /detector	17 sky fibres with a 1 fibre gap	

Fibre Bundle Configuration (3)

Number of fibres	61 (9 fibres on an axis)	
Spatial sampling	0.2 arcsec / fibre	
Bundle sky diameter	1.8 arcsec (point to point)	
Number of detector pixels per fiber	4	
Number of pixels per bundle	244	
Number of bundles per 2k detector	8 (1952 pixels; plus sky fibers?)	
Object Multiplicity (MOIRCS)	16	
Sky fibres/detector	23 sky fibres plus 1 fibre gap	


N=61 bundle (Bryant et al. 2014, MNRAS 438, 869)

Instrument setup

- Starbugs unit will be attached to the Cassegrain focus
- Spectrograph will be placed at the observation floor or at Nasmyth platform and connected to the starbugs with fibers.
 - F-conversion might be necessary to reduce the F# (12.4 → →) (e.g. 3.0) and avoid the effect of FRD(?)
 - Throughput of the fiber will be (e.g. 90%@NIR).
- Fiber will be connected to the fiber slit in the focal plane module, which is placed in the cryogenic condition.
 - Minimum spacing in between fiber centers should be 4 pixels or larger and the minimum spacing between the 90% EE diameter of each adjacent fiber should be 1 pixel or larger to avoid significant cross-talk and ensure the accuracy of the sky subtraction (<0.5%? based on PFS study).
 - F-conv. optics in side of the FP module might be necessary to change the F# back to the original (12.4) or to the optimum number for the spectrograph.

Phase-I: Starbug+ New MOIRCS

- First light instrument for GLAO
 - Commissioning obs. will start from around 2017?
 - Observations with OH suppression 2020?.
- Number of bundles:
 - (1) HK500, zJ500, R1300+BB(JHK), VPH: 26 (config 1); 52 (config 2); 16 (config 3)
 - (2) R1300 or VPH + Narrow-band or Intermediate band filters: 78 (config 1); 156 (config 2); 48 (config 3)

- Sensitivity: 60-70% of MOSFIRE/Keck (MOIRCS VPH only)
- Sensitivity: 75-85% of KMOS/VLT (MOIRCS VPH only)
- Need to multiply by 70-80% efficiency for fiber system
- MOIRCS will be moved to the observation floor or Nasmyth platform and connected to the starbugs with fibers.
- Focal plane unit of MOIRCS will be modified so as to feed the light into slits from fibers.

Phase-II: Starbug +new dedicated instrument

- First light will be several years after GLAO commissioning
- Number of bundles:
 - 52 (config 1); 104 (config 2); 32 (config 3) for each spectrograph!
 - Φ13′.5 FOV
- Sensitivity: 70-80% of MOSFIRE/Keck
 - Sensitivity of the spectrograph should be same as or higher than MOSFIRE.
 - Only difference is throughput and emissivity due to the fibers.
 - Not including telescope diameter difference
- New instrument will be placed on the observation floor or Nasmyth platform and connected to the starbugs with fibers.

Sensitivity comparison with MOSFIRE

	MOIRCS		MOSFIDE
	Current	New	MOSFIRE
FOV	4'x7'		6′.1x6′.1
Imaging throughput (atm+Telescope+Instrument)	0.23(J), 0.34(H),0.30(K)		0.54(J),0.56(H),0.50(K)
Spectral resolution	500, 1300, ~3000(VPH)*		3500
Grating diffraction efficiency	HK500, zJ500: 0.8(J), 0.78(H), 0.65(K) R1300: 0.2(J), 0.3(H), 0.5(K) VPH: ~0.75(J), ~0.7(H) 0.80(K)		0.60(J), 0.65(H),0.70(K)
Spec. throughput (atm+Telescope+Instrument)	HK500, zJ500: 0.18(J), 0.26(H), 0.20(K) R1300: 0.05(J), 0.10(H), 0.15(K) VPH: ~0.15(J), ~0.20(H), ~0.26(K)		0.325(J), 0.361(H), 0.350(K)
Detector	HAWAII-2	HAWAII-2RG	HAWAII-2RG
QE	~80%(JHK)		~80%(JHK)
Read-out noise	15e rms (16NDR)	5e rms (16NDR)	5e rms (16NDR)

^{*} For 0.5" slit. Using a fiber with 0.2" spatial sampling, resolutions are 2.5 times higher.

Sensitivity Improvement of MOIRCS

- HAWAII2 => H2RG
 - Readout noise: 15e- => 5e-
- Grism replacement
 - System throughput: 15%(R1300) => 25%(R2000)
- Sharp and stable image with GLAO
- Improvement of emission line sensitivity
 - Point source: >1.2 mag. (>3x)
 - Extended source: ~0.5 mag. (~1.6x)

Sensitivity comparison with MOSFIRE

- Current MOIRCS sensitivity is 4~7 times lower than MOSFIRE (difference in the telescope diameter is not taken into account).
- If the new MOIRCS can successfully reduce the RO-noise down to 5e-, the sensitivity difference is about 1.4(VPH)~2.3(R1300).
- This difference can not be reduced without changing the optical coating.
 - MOSFIRE has 31 surfaces
 - Average throughput in each surface is about 0.992.
 - Total throughput of the optical coating is about 0.78
 - MOIRCS has 24 surfaces.
 - Average throughput of the coating is 0.983.
 - Total throughput of the coating is 0.64.