GLAO instrument specifications and sensitivities

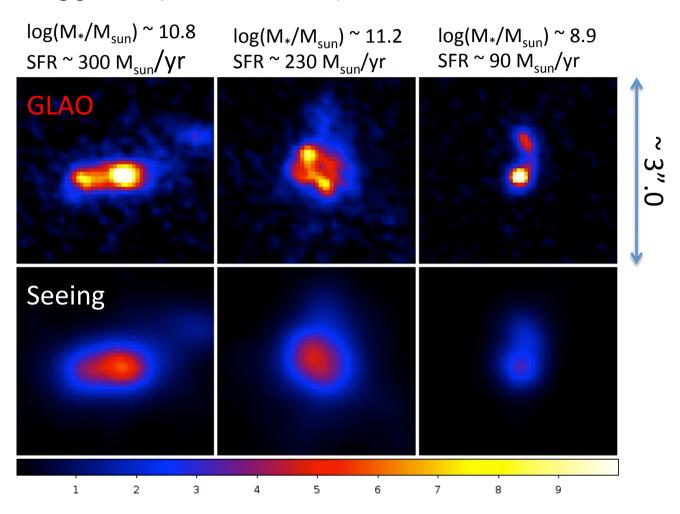
Yosuke Minowa

+ Subaru NGAO working group

(Subaru Telescope, NAOJ)

ULTIMATE-Subaru Instrument Plan as of 2013

- Wide Field NIR imaging
 - Broad-band (BB) imaging
 - Narrow-band (NB) imaging
- Multi-Object Slit (MOS) spectroscopy
 - Emission line
 - Continuum
- KMOS type Multi-IFU spectroscopy
 - Emission line


Science cases with these instruments have been discussed at GLAO Science WS 2013 in Sapporo.

ULTIMATE-Subaru Baseline Instrument Specifications as of 2013

	Imager	MOS spectrograph	Multi-object IFU	
Wavelength Coverage	0.9-2.5 μm			
Plate Scale	0.10 aı	rcsec/pix	0".125/spaxel	
FOV	13'.6	IFU: 1".75x1".75 Patrol Area: φ~13'		
Filters				
Spectral Resolution	-	~3000	~3000	
Multiplicity	-	100-150 slits	~24 IFUs (TBD)	
Detectors	4 x H4RG	3-4 H4RG (Teledyne)		
Throughput (Atmosphere +Telescope +Instrument)	~60%(J,H), ~50%(K) (similar to VLT/HAWK-I)	~33%(J), ~35%(H,K) (similart to Keck/MOSFIRE)	~26%(J), ~30%(H,K) (similar to VLT/KMOS)	

ULTIMATE-Subaru performance simulation for z~2 galaxies

z~2 star-forming galaxies (Tadaki et al. 2013)

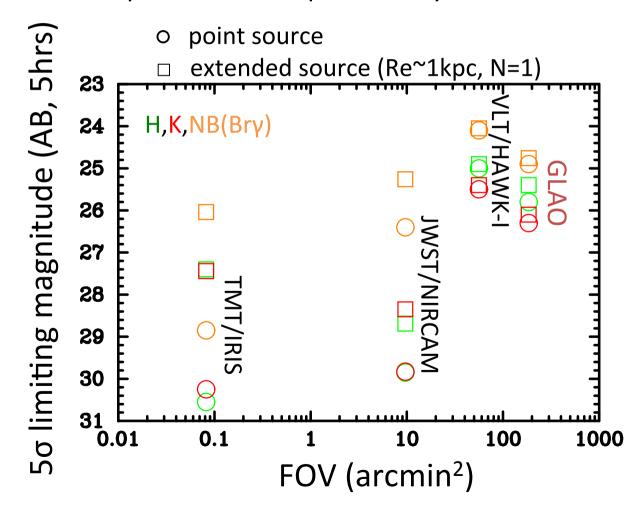
1kpc scale Clumpy structure of star-forming galaxies can be spatially resolved with GLAO

Comparison with Wide-Field AO instruments at 8-10m class telescope in 2020s

Instrument/Tel.	FOV	Multiplicity	λ(μm)	R	AO	
	Imager					
HAWK-I/VLT	7'.5x7'.5	-	0.9-2.5	-	GLAO(GRAAL),~0".2	
FLAMINGOS2/Gemini-S	2'.0x2'.0	-	0.9-2.5	-	MCAO(GEMS), <0".1	
ULTIMATE/Subaru	ф~13′.6	-	0.9-2.5	-	GLAO, ~0".2	
Multi-Object Slit Spectrograph						
MOSFIRE/Keck	6′.1x6′.1	<46	0.9-2.5	~3500	NOAO,~0".5	
FLAMINGOS2/Gemini-S	2'.0x2'.0	?	0.9-2.5	~3000	MCAO(GEMS),<0".1	
ULTIMATE/Subaru	ф~13′.6	~100	0.9-2.5	~3000	GLAO, ~0".2	
Multi-Object IFU Spectrograph						
KMOS/VLT	ф~7′.2	24	0.9-2.5	~4000	NOAO,~0".5	
MUSE/VLT	1'x1'	1	0.46-0.93	~4000	GLAO(GRAAL),~0".3-0".4	
ULTIMATE/Subaru	ф~13′.6	24	0.9-2.5	~3000	GLAO, ~0".2	

• The most unique capability of ULTIMATE-Subaru is the widest FOV among the other AO instruments.

Comparison with TMT/Space instruments in 2020s

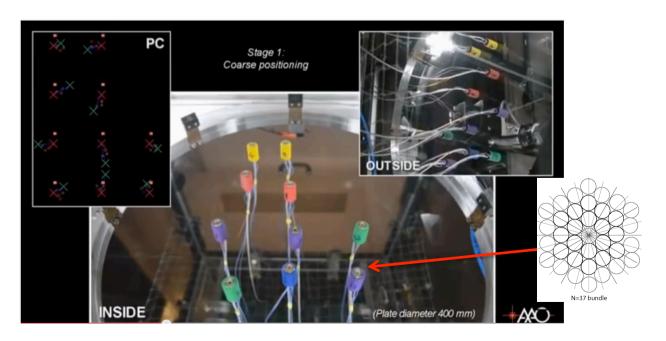

Instrument/Tel.	FOV	Multiplicity	λ(μm)	R	AO, FWHM
Imager					
IRIS/TMT	17".2x17".2	-	0.9-2.5	-	MCAO(NFIRAOS),~0".01
NIRCam/JWST	2'.2x4'.4	-	0.5-5.5	-	Space, <0".08
Euclid	0.5 deg ²	-	0.9-1.6	-	Space, ~0".4
WFIRST	0.3deg ²	-	0.6-2.0	-	Space,~0".2
WISH	0.23deg ²	-	0.9-5.0	-	Space, ~0".3
ULTIMATE/Subaru	ф~13′.6	-	0.9-2.5	-	GLAO, ~0".2
		Multi-Object Sl	it Spectrog	raph	
TMT/IRMS	2'.1x2'.1	<46	0.9-2.5	5000	MCAO(NFIRAOS),~0".01
NIRSPEC/JWST	3'.0x3'.0	>100	1.0-5.0	~2700	Space,<0".08
ULTIMATE/Subaru	φ~13′.6	~100	0.9-2.5	~3000	GLAO, ~0".2
Multi-Object IFU Spectrograph					
IRIS/TMT	<2".2x4".5	1	0.9-2.5	>4000	MCAO(NIFRAOS),~0"01
IRMOS/TMT	φ~5′.0	20(?)	0.9-2.5	>2000	MOAO, <0".1
ULTIMATE/Subaru	φ~13′.6	24	0.9-2.5	~3000	GLAO, ~0".2

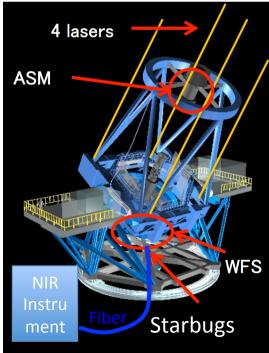
- Survey type space telescope would be the best for imaging, but less flexible
- IFU is less competitive compared with TMT instruments

ULTIMATE-Subaru: performance

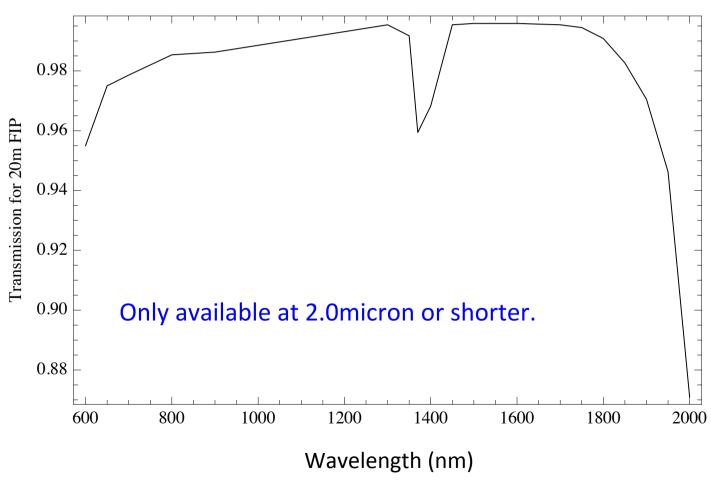
• Imaging sensitivity comparison

NB imaging survey of galaxies with the ULTIMATE-Subaru (GLAO) would be competitive or complementary to the TMT or JWST.



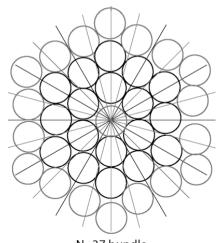

Summary from the workshop in 2013

- Imaging mode
 - Largest FOV in FWHM~0".2 resolution
 - NB wide field survey is competitive even compared with JWST instruments.
 - K'-band wide field imaging is also acceptable.
- Multi-Object Slit Spectroscopy
 - Combination with NB survey would be the best in terms of flexibility and long period compared.
- Multi-Object IFU spectroscopy
 - Provides more information than slit spectroscopy, but number of IFU (~24) is not enough.
 - Can be replaced by NB imaging to some extent.


New Instrument Plan under Consideration

- Multi-object fiber IFU spectrograph
 - Fiber-bundle multi-IFU system
 - Utilize "Starbugs" developed by AAO
 - More multiplicity than KMOS-type IFU
 - Feed the light from the starbugs to the existing NIR instruments (e.g. MOIRCS)

Fibre throughput model fibre only, no coupling losses or FRD


From: Andy Sheinis

Instrument setup

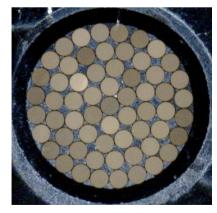
- Starbugs unit will be attached to the Cassegrain focus
- Spectrograph will be placed at the observation floor and connected to the Starbugs with fibers.
 - F-conversion optics should be necessary to reduce the F# (12.4 \rightarrow) (e.g. 3.0) and avoid the effect of focal ratio degradation.
 - Throughput of the fiber will be (e.g. 90%@NIR).
- Fiber will be connected to the fiber slit in the focal plane module, which is placed in the cryogenic condition.
 - Minimum spacing in between fiber centers should be 4 pixels or larger and the minimum spacing between the 90% EE diameter of each adjacent fiber should be 1 pixel or larger to avoid significant cross-talk and ensure the accuracy of the sky subtraction (<0.5%? based on PFS study).
 - F-conv. optics in side of the FP module might be necessary to change the F# back to the original (12.4) or to the optimum number for the spectrograph.
- Total throughput including fiber and pre and post F-conversion optics would be 70-80%
- → Andy's talk for more detail

Fibre Bundle Configuration (1)


Number of fibres	37 (7 fibres on an axis)
Spatial sampling	0.2 arcsec / fibre
Bundle sky diameter	1.4 arcsec (point to pint)
Number of detector pixels per fiber	4
Number of pixels per bundle	148
Number of bundles per 2k detector	13 (1924 pixels; plus sky fibers?)
Object Multiplicity (MOIRCS)	26
Sky Fibres/detector	30 sky fibres with 1 fibre gap

N=37 bundle

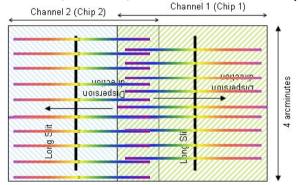
Fibre Bundle Configuration (2)


Number of fibres	19 (5 fibres on an axis)
Spatial sampling	0.2 arcsec / fibre
Bundle sky diameter	1.0 arcsec (point to pint)
Number of detector pixels per fiber	4
Number of pixels per bundle	76
Number of bundles per 2k detector	26 (1976 pixels; plus sky fibers?)
Object Multiplicity (MOIRCS)	52 (feasible??)
Sky fibres /detector	17 sky fibres with a 1 fibre gap

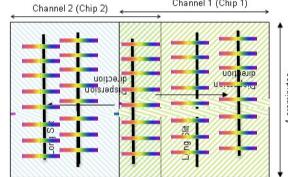
N=19 bundle

Fibre Bundle Configuration (3)

Number of fibres	61 (9 fibres on an axis)		
Spatial sampling	0.2 arcsec / fibre		
Bundle sky diameter	1.8 arcsec (point to point)		
Number of detector pixels per fiber	4		
Number of pixels per bundle	244		
Number of bundles per 2k detector	8 (1952 pixels; plus sky fibers?)		
Object Multiplicity (MOIRCS)	16		
Sky fibres/detector	23 sky fibres plus 1 fibre gap		



N=61 bundle (Bryant et al. 2014, MNRAS 438, 869)


Phase-I: Starbug + New MOIRCS

- First light instrument for GLAO
 - Commissioning obs. will start from around 2017 in the earliest case.
 - Observations with OH suppression might be be an option
- Number of bundles in ϕ ~13.5 arcmin FOV:

(1) HK500, zJ500, R1300, VPH+BB(JH) filters

(2) R1300 or VPH +NB filters

26 (config 1); 52 (config 2); 16 (config 3)

78 (config 1); 156 (config 2); 48 (config 3)

- MOIRCS will be moved to the observation floor and connected to the Starbugs with fibers.
- Focal plane unit of MOIRCS will be modified so as to feed the light into slits from fibers.

Sensitivity comparison with MOSFIRE

	N	MOIRCS	MOSEIDE
	Current	New	MOSFIRE
FOV	4'x7'		6'.1x6'.1
Imaging throughput (atm+Telescope+Instrument)	0.23(J), 0.34(H),0.30(K)		0.54(J),0.56(H),0.50(K)
Spectral resolution	500, 1300	0, ~3000(VPH)*	3500
Grating diffraction efficiency	HK500, zJ500: 0.8(J), 0.78(H), 0.65(K) R1300: 0.2(J), 0.3(H), 0.5(K) VPH: ~0.75(J), ~0.7(H) 0.80(K)		0.60(J), 0.65(H),0.70(K)
Spec. throughput (atm+Telescope+Instrument)	HK500, zJ500: 0.18(J), 0.26(H), 0.20(K) R1300: 0.05(J), 0.10(H), 0.15(K) VPH: ~0.15(J), ~0.20(H), ~0.26(K)		0.325(J), 0.361(H), 0.350(K)
Detector	HAWAII-2	HAWAII-2RG	HAWAII-2RG
QE	~80%(JHK)		~80%(JHK)
Read-out noise	15e rms (16NDR)	5e rms (16NDR)	5e rms (16NDR)

^{*} For 0.5" slit. Using a fiber with 0.2" spatial sampling, resolutions are 2.5 times higher.

Sensitivity Improvement of MOIRCS

- HAWAII2 => H2RG
 - Readout noise: 15e- => 5e-
- Grism replacement
 - System throughput: 15%(R1300) => 25%(R2000)
- Spectral resolution will be more than 2 times higher than MOIRCS nominal value by using 0".2 fibers.
- Sharp and stable image with GLAO
- Improvement of emission line sensitivity
 - Point source: >1.2 mag. (>3x)
 - Extended source: ~0.5 mag. (~1.6x)

Sensitivity comparison with MOSFIRE

- Current MOIRCS sensitivity is 4~7 times lower than MOSFIRE (difference in the telescope diameter is not taken into account).
- If the new MOIRCS can successfully reduce the RO-noise down to 5e- and replace the grism, the sensitivity difference is about 1.4.
- This difference can not be reduced without changing the optical coating.
 - MOSFIRE has 31 surfaces with
 - Average throughput in each surface: ~0.992
 - Total throughput of the optical coating: ~0.78.
 - MOIRCS has 24 surfaces.
 - Average throughput of the coating: ~0.983.
 - Total throughput of the coating: ~0.64.

0.78 / 0.64 ~ 1.2

 Throughput of the Phase-I (Starbugs+new MOIRCS) will be around 50% of MOSFIRE/Keck (or 60-75% of KMOS/VLT)

Phase-II: Starbug +new dedicated instrument

- First light will be several years after GLAO commissioning
- Number of bundles:
 - 52 (config 1); 104 (config 2); 32 (config 3) for each spectrograph!
 - Φ13'.5 FOV
- Spectral Resolution: 3000-4000 (TBD)
- Sensitivity: 70-80% of MOSFIRE/Keck (or 90-100% of KMOS/VLT)
 - Sensitivity of the spectrograph should be same as or higher than MOSFIRE.
 - Only difference is throughput and emissivity due to the fibers.
- New instrument will be placed on the observation floor or Nasmyth platform and connected to the starbugs with fibers.

Items to be discussed in this WS

http://www.naoj.org/Projects/newdev/ngao/glaows14/files/questions.html

- Instrument Specifications
 - 1) Optimal sampling and FOV of the fiber bundle
 - Which configuration is the best for your science case?
 - 2) Number of fiber bundles (or multiplicity) in 13'.6 FOV
 - What is the minimum number of multiplicity to be still competitive in 2020s?
 - 3) Wavelength coverage
 - Please note that fiber IFU is currently available up to 2.0 micron.
 - Implementation of the K-band fiber requires R&D.
 - 4) Spectral resolution
 - 5) Sensitivity requirement
- Science Case
 - 6) Observation plan with Phase-I (Starbugs+new MOIRCS) instrument
 - 7) Uniqueness of the science case
 - Is it competitive or complementary to the science with 30m class or space telescope?
- Phase-II instrument
 - 8) Requirement to the Phase-II (Starbug + new spectrograph) instrument
- Uniqueness
 - 9) Fiber bundle multi-IFU is more unique than multi-object slit spectrograph?

Please answer these questions in your presentation and discuss in this WS!