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Open questions about Star/Planet formation
@Extreme-Subaru & TMT-era

xWhat key physical processes govern the formation of

stars?
+ that of Brown dwarfs (BDs), the least massive objects (planetary-
mass objects; PMOs) and most massive stars, especially?
¥ How and when BDs and PMOs form?
+I1s the process same as “star” or “planet”?
x Whether the IMF is universal or not? If not, what

determines it?
+Do they have turn-over?
+Very lower-mass and upper-mass end
+Over a range of mass, metallicity, stellar density, and
environment




Formation of
Brown Dwarf & Planetary Mass Objects
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JHK photometry have revealed “Planetary Mass Objects” (Oasa
et al. 1999)

Do such lower-mass objects form in the similar way?

Initial Mass Function

m Stellar evolution depends on its mass

m 10~0.4Mo: Salpeter-like IMF appears almost anywhere:
the number of stars increase with decreasing mass
% Salpeter’s law o Pmedisle-mass)  high-mese
+Increase monotonously
% Scalo’s law
+Peark around 0.3Mo
+data incompleteness:-- ?
% Kroupa et al...
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(Non)Universal IMF?
Is the IMF universal anywhere?
o IMF does not appear the “same” IMF (Scalo 1998)

e Its form is local variable among clouds/cluster (S106: Oasa
et al. 2006, Trapezium: Hillenbrand 1997, NGC 3603: Harayama et al. 2008)
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Characteristics of Young Stellar Object (YSO)

BDs and PMOs are extremely faint, but..

e They are brighter at earlier evolutionary stage.

e Embedded and very low-mass YSOs — bright at NIR
e YSOs in cluster have almost the same age, distance
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Mass Function -NGC1333-

However, there are still many open questions:--
o Depends on environment, such as cloud conditions, UV

radiation and metallicity?

o At the lower/upper-end ?

o Taking into account of ambiguous binarity, *+< ?
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Planetary-mass objects in the various SFRs!

The Obscured Star—Forming Complex W5 \/ery deep NlR Imaglﬂg enough J[O
detect young BDs and PMOs

To detect embedded planetary mass
objects @ NG(C75H38 (~2.7kpc; Av>1DH)

| JHK photometry(J=25) = massive
PMOs with Av=15 @1Myr

For comparison--- with WISH, TMT
WhH1 (~7.5kpc; Av>2b)

JHK photometry(J=27) 2 massive
BDs with Av=2b @1Myr

Investigation of low-mass IMF with
various environments

Are they bona fide young BDs/PMQOs?




NIR Multi-Object Spectroscopy :

Temperature and Mass Estimate
Subaru+MOIRCS(2048x2048x2 HgCdTe FoV~4x7")

Preimage+mask Maskimage Rawdata A-B subtracted

S106: Qasa et al in nren
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are some problems:---

‘ o Spectra is overlapped with the neighboring stellar one.
— the number of slit is too much? (57 ) '

o Misalign? (furthermore, flat problem)




Massive star formation studies

Massive stars form in dense clusters, most of which are
formed with companion
Do the most massive stars form through accretion?
What is disk life-time?
Is there any mass segregation?
JHK (L) photometry — disk candidates
Proper motion — cluster e
Trace IMF across full range of
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Questions on instrument specifications for
Star/Planet formation studies

Recent warks for low-mass young stellar populations with deep NIR
observations for various SFRs provide possible evidence for IMF variations

1. Baseline specifications of NIR instruments
Wide-Field NIR Imager and Multi-Object Spectrograph!!

If Integral Field Spectrograph is available, we can observe the
disk/jet structure, in the following...

D. What is the optimal plate scale / FoV for your science cases?

Wider is better! But, 0.1”/pixel seems good.

3. Can you highlight synergies between this instrument and the TMT?

Yes, TMT will allow us to detect much fainter targets, i.e. lower -
mass objects or in farther regions. TMT L-photometry and high-
resolution spectroscopy will enable us to determine the disk
structure, age and mass for substellar objects unambiguously.




Questions on instrument specifications for
Star/Planet formation studies

4. Does this instrument have competitive (or complementary) capabilities
with planned NIR space missions such as JWST, Euclid and WISH?

Yes, other NIR missions, especially WISH, are complementary tool for
our aims.

5. Do you need spectroscopic capability? If yes, is it possible (or strong
enough) to carry out with FoV of the current MOIRCS (4' x 6') but with GLAO

or do you need much wider FoV? If the latter is the case, why?

Yes, we need NIR spectroscopy strongly. MOIRCS is a powerful tool.
If possible, we request multi-object spectroscopy with wider FOV (10').
Rather, we prefer “uncontaminated spectra”

In summary, we hope the wider field imager and MOS with GLAO,
but the upgraded MOIRCS will also benefit our studies.

Large scale structure of jets

i IFU spectroscopy will make clear the origin
!‘ g|o1c the launching mechanism of the
 outflows/]ets.

‘e Jets emanating from YSOs are often twisted.

V1331 Cyg case (binary)
= Precession (Terquem+ 1999)
= Twisted magnetic field (Uchida & Shibata 1985)

= Interaction with dense ISM

& \ - e |IfJetsare twisted with ~150 km/s, we can
| '. 5 determine kinematics, temperature, and
.( B e e lonization in larger scale using mid-
5 ) *  resolution spectroscopy (R~1000).
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FOV=5.5"x 2’ (Mundt & Eisloffe] 1998)




Model for 15 M;, (D-burning limit) 0TS44 in Chamaeleon
M9.5, T = 2300 K

— backbody KPNO4 = comparison
object of same spectral
type; no excess.

2300 K BB
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Excess is modelled as a
disk, dM/dt=1019 Msun/yr

Comparison SED+BB scale
to H-band.
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Young Brown Dwarfs with disk
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Do the least massive objects have circumstellar disks?




