Development of an integral field unit for a NIR-MOS camera: SWIMS

Yutaro Kitagawa (Univ. of Tokyo)

Subaru GLAO Science Workshop

@ Hokkaido university
2013/06/13-14

Collaborator

- ✓ SWIMS team in TAO project
 - Kentaro Motohara (PI)
 - Masahiro Konishi
 - Hidenori Takahashi
 - Natsuko Kato
 - Ken Tateuchi
 - Soya Nishijima

- ✓ NAOJ-ATC*
 - Shinobu Ozaki
- ✓ Kyoto-Sangyo Univ.
 - Tomohiro yoshikawa

*Advanced Technology Center

Outline

- ✓ Introduction
 - -What is an IFS?
- Development of SWIMS-IFU
 - concept
 - mechanical/optical design
- ✓ Towards the future
 - next generation instruments with IFU
- ✓ Summary

Introduction (1)

What is an integral field spectrograph?

✓ IFS enables to obtain spectra over a 2D field- of- view

"Data Cube"
2D spacial info. = (RA, DEC)
+
1D spectral info. = λ or v

http://sciencewise.anu.edu.au/

Introduction (2)

Main IFS techniques

The 3 types of Integral Field Unit (= IFU)

Introduction (3)

The concept of Advanced image slicer

Introduction (4)

near-IR Integral Field Spectroscopy

- ✓ The need for near-IR spectroscopy
 - (1) Less affected by dust obscuration (e.g. dusty starbursts)
 - (2) At z>1most of the key spectral features are redshifted in the near-IR

Samples in the local universe

LIRG (z=0.01) with high spatial resolution (~0.3kpc)

J. Piqueras Lopez et al. (2013)

Forster Schreiber et al. (2009)

Introduction (5)

near-IR Integral Field Unit

✓ current near-IR IFUs of the 8-10m class telescopes

telescope	VLT (8.1m)	Keck (10m)	Gemini (8.1m)
NIR-IFU	SINFONI	OSIRIS	NIFS
IFU-type	slicer	lenslets	slicer
λ [um]	1.1-2.45	1.0-2.4	0.94-2.4
R=λ/Δλ	2000-4000	~3800	5000-6000
Spatial element size	0.0125" x 0.025" 0.050" x 0.10" 0.125" x 0.250"	0.020", 0.035" 0.050", 0.100"	0.104"x0.04"
Field of view	0.8" × 0.8" 3" × 3" 8" × 8"	0.32" × 1.28" - 3.2" × 6.4"	3"×3"

Conceptual design of SWIMS-IFU

✓ SWIMS-IFU

- advanced image slicer IFU
- compact & lightweight
 - → enable to install into MOS camera as a "mask-slit"

parameters of SWIMS-IFU

λ [um]	FoV	Slice width	No. of slice
0.9 – 2.5	14"×10"	0.4"	26

NIR-MOS camera: SWIMS

✓ SWIMS = Simultaneous—color

Wide-field
Infrared
Multi-object
Spectrograph

SWIMS is capable of

- wide-field <u>imaging(6.6' x 3.3')</u> & <u>spectroscopy(2.8' x 3.3')</u>
- covering the entire NIR spectra
 (0.9- 2.5 um) in a single exposure

M. Konishi et al. Proc. SPIE, 8450-144 (2012)

Development of SWIMS-IFU

- ✓ What are problems ??
 - (1) IFU is mounted inside the SWIMS slit slide mechanism

"compact & lightweight" design is required!

But such a optical solution can be really exist ...?

(2) IFU is placed under a cryogenic environment

Metal processing mirrors are desirable!

How can we achieve required surface accuracy...?

Development of SWIMS-IFU

- ✓ What are problems ??
 - (1) IFU is mounted inside the SWIMS slit slide mechanism

"compact & lightweight" design is required!

But such a optical solution can be really exist ...?

(2) IFU is placed under a cryogenic environment

Metal processing mirrors are desirable!

How can we achieve required surface accuracy...?

Mechanical design

✓ very compact & lightweight unit

Cornelis et al.

Size $170 \times 140 \times 40 \text{ mm}^3$

Mass < 700g

<GNIRS/GMOS>

Size:200 \times 100 \times 100 mm³

Mass:<1000g

(2006)

Size limit to install into MOS camera

TAO ME WIVE STITY OF TORIN

Optical design

Optical components of SWIMS-IFU

Optical design

✓ Condition (2)

collimated light between (PO1) and (PO2)

PO1 & PO2 work as magnifier

(PO1)
(PO2)
β1

 \vee Condition (3) β(magnification)= β1 x β2 = 2.5

TAO INF INVERSITY OF TORS

Optical design

constructing the solution which satisfies the size limit

But in this case, each reflective surface of slice mirror has curvature...

Development of SWIMS-IFU

- What are problems ??
 - (1) IFU is mounted inside the MOS slit-mask exchanger

"compact & lightweight" design is required!

But such a optical solution can be really exist...?

(2) IFU is placed under a cryogenic environment

Metal processing mirrors are desirable!

How can we achieve required surface accuracy...?

Fabrication of a slice mirror

Slice mirror (flat)

Processing method using glass can achieve high accuracy.

But it is

- difficult to make a non-spherical surface
- cause the optical axis deviation under low-T

Development of SWIMS-IFU (9)

Test fabrication

All mirror in SWIMS-IFU will be made of aluminum alloy with high precision machining technique

match the thermal expansion with support structures under a cryogenic environment.

Towards the future (1)

Present condition of multi-object IFU

KMOS-VLT (first light occurred on 21 November 2012)

- •λ=0.8 2.5 um (R=3000-4000)
- patrol field: Φ7.2'
- •24 IFUs (each FOV is 2.4" × 2.4")
- •spatial sampling: 0.2" × 0.2"

They adopted the advanced image slicer IFUs.

Towards the future (2)

Future instruments using IFS

- <Ground-based observation>
 - ✓ VLT
 - KMOS(near-IR), MUSE(optical)
 - ✓ TMT
 - IRIS(near-IR),

They have also lenslets mode.

- <Space observation>
 - ✓ JWST
 - NIRSpec(near-IR)

The advanced image slicer IFUs is the key technique for future instruments

Towards the future (3)

Future instruments using IFS

Questions to Speakers

To all workshop speakers: please include your responses to the q

Questions on instrument specifications

Primary questions

- (Q.1) In the <u>baseline specifications of NIR instruments</u>,
 - Wide-Field Near-IR Imager
 - Wide-Field NIR Imager and Multi-Object Speraph
 - Multi-Object Integral Field Spectrograph

Which instrument is essentially important for your science cases?

// 2) What is the entimal plate scale / FeV for your science sacce? /see CLAO specifications for expect

Wide-field NIR imager & MOS with GLAO + IFS mode

✓ This type of IFU (e.g. SWIMS-IFU, GNIRS, v-MOIRCS?)
is a fully independent, self-contained module

There are no IFUs with GLAO for now, but above will give the way to achieve it.

I'd like to propose the 4th option!

"MOS camera + IFU"

Summary

✓ Integral Field Spectroscopy have an increasing impact on our understanding of galaxy evolution mechanisms.

- ✓ The advanced image slicer IFUs is the key technique for future instruments such as TMT, JWST (Of course for Subaru !!)
- ✓ SWIMS-IFU is now under developing
 - constructing the solution which satisfies the size limit In this case, slice mirror has curvature
 - verifying the high precision machining technique by fabricating the test pieces