NIR INSTRUMENT FOR GLAO

Takashi Hattori, Iwata Ikuru (Subaru Telescope)

Instrument for GLAO

- Need for wide field NIR instrument
 - GLAO: good image quality over 15' FoV
 - cf. current Cs NIR instrument (MOIRCS) has 4' x 7' FoV
- Three Candidates
 - Wide-Field Imager
 - conceptual study by Dr. John Pazder (HIA)
 - Wide-Field Imager and Multi-Object Spectrograph
 - optical designs by OptCraft
 - Multi-Object Integral Field Spectrograph
 - KMOS-like instrument?

Modifications to the Telescope

- original design of the telescope : Φ6' FoV for Cs
 - modifications are necessary for wider FoV
 - may affect the plan of the new instrument
- study by MELCO
 - FoV up to <u>Φ20'</u> at Cs
 - vignettings by telescope structures : <u>Cassegrain-unit</u>, <u>M3-unit</u>, and <u>Cell-cover</u>

14' FoV

- M3-unit
 - 2 small overlaps
 - only small modifications are necessary

- 14' FoV
 - Cs-unit
 - ADC, AG/SH, CAL, and SV are need to be removed and implemented to the new instrument if necessary

- 14' FoV
 - Cell-cover
 - has to be removed/replaced for FoV > ϕ 12'

- 20' FoV
 - most structures of M3-unit overlap Φ20' light path
 - new development of M3-unit is necessary

MELCO (2013)

Modifications to the Telescope

- Summary
 - ≦Φ12'
 - remove/replace ADC, AG/SH, CAL, and SV in Cs-unit
 - · ϕ 14'
 - remove/replace cell-cover
 - small modifications to M3-unit
 - Φ20'
 - new development of M3-unit
 - significant modification to the telescope
 - need more study

- conceptual study by Dr. John Pazder (HIA)
- concentric corrector + 4-barrel imaging system

- concentric corrector
 - universal GLAO focus station (22'.8 FoV)
 - image quality < 66mas at the telescope focus
- require significant modification to the telescope

- imaging system
 - each camera covers 6'.8x6'.8
 - 0".1 sampling with one H4RG-15
 - image quality at the detector
 - < 1pixel (except at the outer corner, rms diameter~16µm)

Scale bar : 30

specifications

Wavelength	0.8-2.5µm
Pixel Scale	0".1 / pixel
FoV	6'.8x6'.8x4 (185□')
Detectors	H4RG x 4
Filters	Broad + Narrow

- optical designs by OptCraft
 - with/without FoV splitting
 - with/without change in M2 parameters (and M1 deformation)
 - optical components (CaF2) < 400mm
 - image quality < 0".15 in 0.8-2.5µm (goal)
 - flat focal plane for MOS
- MOS mask exchanger, narrow-band filter
 - need studies

single FoV, no-change to M2 parameters

- single FoV, no-change to M2 parameters (imaging)
 - image quality <0".15 rms except for 800-900nm (<0".18)

MATRIX SPOT DIAGRAM

OptCraft (2012)

specifications under consideration

Wavelength	0.8-2.5µm
Pixel Scale	0".06 - 0".1 / pixel
Detectors	H4RG x 4
Filters	Broad + Narrow
MOS	Multi Slit Mask
Dispersion	R=2000-3000

spatial sampling and FoV

Pixel Scale	FoV for 4 H4RGs
0.06	8'.19
0.07	9'.56
0.08	10'.92
0.09	12'.29
0.10	13'.65

- A case with FoV splitting
 - require significant modifications to the telescope

A case with FoV splitting

- grism performance study by Photocoding
 - ZnSe or Si grisms for R=3000-3500
- mechanical feasibility study by SHI
 - the case with FoV splitting
 - ongoing

(3) Multi-Object Integral Field Spectrograph

- no specific study so far
- instrument similar to KMOS (VLT)

(3) Multi-Object Integral Field Spectrograph

specifications under consideration

Wavelength	0.8-2.5µm
Pixel Scale	0".15 / pixel
Number of IFU	24
FoV/IFU	1".8 x 1".8
Patrol Area	13-16' ?
Dispersion	R=2000-3000 ?

Three Levels of Instrument Plan for GLAO

- (0) No new instrument use MOIRCS
- (1) Wide-field NIR Imager
- (2) Wide-field NIR Imager + MOS (WFNIRMOS)
- (3) Multi-object Integral Field Spectrograph
- Which instrument is essentially important for your science cases?
- What is the optimal sampling/FoV for your science cases?

Spatial sampling vs. FoV

NIR Imager or Imager+MOS

Pixel Scale	FoV for 4 H4RGs
0.06	8'.19
0.07	9'.56
0.08	10'.92
0.09	12'.29
0.10	13'.65