FOCASおよびMOIRCS用グリズム Grisms for FOCAS and MOIRCS

N．Ebizuka ${ }^{1,2}$ ，K．S．Kawabata ${ }^{3}$ ，K．Oka ${ }^{4,2}$ ，A．Yamada ${ }^{4}$ ，M．Kashiwagi ${ }^{4}$ ， M．Hanesaka ${ }^{4}$ ，K．Kodate ${ }^{4}$ ，K．Ichiyama ${ }^{5}$ ，T．Yamada ${ }^{5}$ ，C．Tokoku ${ }^{5}$ ，
T．Ichikawa ${ }^{5}$ ，K．Shimasaku ${ }^{6}$ ，I．Tanaka ${ }^{7}$ ，N．Kashikawa ${ }^{7}$ ，T，Hattori ${ }^{7}$ ，M． Iye 7 ${ }^{1}$ Nagoya University，${ }^{2}$ RIKEN，${ }^{3}$ Hiroshima University，
${ }^{4}$ Japan Women＇s University，${ }^{5}$ Tohoku University，${ }^{6}$ University of Tokyo， ${ }^{7}$ National Astronomical Observatory of Japan

Grisms for FOCAS

Grism name	［Groovs／mm］	Prism（deg．，material）	1st order	2nd order	Grating	Assy
Very low	75	5.75, S－FSL5	$284 @ 650 \mathrm{~nm}$		RGL	
Low	150	11.55, S－FSL5	$571 @ 650 \mathrm{~nm}$	$714 @ 400 \mathrm{~nm}$	RGL	
Middle blue	300	19.7, S－FSL5	$1,000 @ 550 \mathrm{~nm}$		Jovin Yvon	
Middle red	300	26.1, S－BSL7	$1,426 @ 750 \mathrm{~nm}$	$1,574 @ 390 \mathrm{~nm}$	RGL	
Echelle	175	45.0, S－FSL5		$2,498 @ 972 \mathrm{~nm}$	RGL	
VPH450	1,000	20, PBM3 $\times 2$	$3,104 @ 450 \mathrm{~nm}$		JWU	Ebizuka
VPH520	990	20, S－BAH28 $\times 2$	$3,402 @ 520 \mathrm{~nm}$		JWU	Ebizuka
VPH650	665	20, PBM3 $\times 2$	$2,772 @ 650 \mathrm{~nm}$		Ralcon	Kadomi Opt．
VPH850	364	16, S－BSL7 $\times 2$	$1,655 @ 800 \mathrm{~nm}$		Ebizuka	Ebizuka
VPH900	560	20, S－BAH28 $\times 2$	$2,938 @ 900 \mathrm{~nm}$		JWU	Ebizuka
VPH680	1,572	$20, \mathrm{ZnSe} \times 2$	$8,195 @ 680 \mathrm{~nm}$		JWU	Kogakugiken
VPH800	1,318	$20, \mathrm{ZnSe} \times 2$	$7,365 @ 800 \mathrm{~nm}$		Ralcon	Topcon
VPH950	1,111	$20, \mathrm{ZnSe} \times 2$	$6,944 @ 950 \mathrm{~nm}$		Ralcon	Topcon

Relative efficiencies of grisms with Subaru Telescope and FOCAS

Diffraction efficiencies of new VPH grisms

Dispersion of surface relief grisms

Dispersion of VPH grisms with glass prisms

Dispersion of VPH grisms with ZnSe prisms

Cryogenic VPH Grisms for MOICR（Ebizuka et．al．，PASJ，63，2011）

Transmittance of materials for cryogenic VPH grisms

Efficiencies of SR and VPH Gratings

Surface relief grating：
Efficiency decreases steeply below $4 \Lambda / \lambda$ ．

VPH（Volume Phase Holographic）grating（ $\Delta \mathrm{n} \sim$ 0.02 ）：Efficiency increase up to 100% below $4 \Lambda / \lambda$ ．

Diffraction efficiencies of Y band VPH grating

Dispersion of VPH grisms with ZnSe Prisms

Grism name	［Groovs／mm］	Prism（deg．，material）	1 st order	Peak Efficiency［\％］	VPH grating
Y band	1,025	$20.0, \mathrm{ZnSe} \times 2$	$3,150 @ 1,025 \mathrm{~nm}$	78,77	Soma opt．
J band	819	$19.8, \mathrm{ZnSe} \times 2$	$3,000 @ 1,250 \mathrm{~nm}$	73,82	Tohoku Univ．
H band	614	$20.0, \mathrm{ZnSe} \times 2$	$2,950 @ 1,650 \mathrm{~nm}$	73,70	Tohoku Univ．
K band	431	$18.5, \mathrm{ZnSe} \times 2$	$2,640 @ 2,200 \mathrm{~nm}$	77,80	JWU

Conclusions

－The second diffraction order of FOCAS echelle grism is used for long slit and multi－slit mode．
－VPH gratings are useful not only for high dispersion applications but also for lower dispersion applications．
－Hologram resin is transparent at K band．

