IfA Extragalactic Research

Fabio Bresolin
Institute for Astronomy
University of Hawaii

Kinematics of PNe and possible stellar streams in NGC 891

Shih \& Mendez 20I0, ApJ, 725, L97
FOCAS

$$
\begin{gathered}
\text { on- and off-band } \\
\text { [OIII]5007 images } \\
+ \\
\text { dispersed images } \\
\text { (slitless spectroscopy) } \\
\text { for radial velocities } \\
(\sigma=20 \mathrm{~km} / \mathrm{s})
\end{gathered}
$$

I25 PNe: unusual vertically extended distribution

extended to 4.6 kpc (exponential scale height = 1.1 kpc) agrees with thick disk component (lbata et al 2009)

PN velocity gradient along x-axis agrees with HI and $\mathrm{H} \alpha$ kinematical data (rotating disk)

PN velocity gradient along y-axis asymmetric distribution hints at presence of stellar streams (from minor mergers?)

An X-ray-selected galaxy cluster at $z=1.753$

Henry et al. 20IO,ApJ, 725, 615

Filter	Telescope	Limit (AB)	Exposure (s)	Seeing (")
$U_{\text {LBC }}$	LBT	26.4	49,680	1.06
B_{J}	LBT	26.6	19,972	0.90
V_{J}	LBT	26.5	9,540	0.95
R_{e}	Subaru	26.5	3920	0.90
I_{c}	Subaru	25.2	6,235	0.98
z^{\prime}	Subaru	25.4	10,640	0.96
z^{\prime}	LBT	24.0	14,400	1.06
J	UKIRT	23.4	8,960	0.84
K	UKIRT	22.9	13,740	0.73
IRAC1	Spitzer	22.6	500	1.7
IRAC2	Spitzer		500	1.7
IRAC3	Spitzer		500	1.9
IRAC4	Spitzer		500	2.0

photometric redshifts of 8 galaxies around BCG

Brightest Cluster Galaxy
$z($ phot $)=1.77 \pm 0.06$

MOIRCS spectroscopy of BCG

(25800s exposure, zJ500 grating 0.8 arcsec slits)

Metallicity of outer galaxy disks: NGC 4625

Goddard, Bresolin, Kennicutt et al. 20II, MNRAS, in press

G A E G Galaxy Evolution Explorer

Extended Disk of Galaxy M83

M83

Bresolin, Ryan-Weber,
Kennicutt \& Goddard 2009

NGC 300

Vlajic, Bland-Hawthorn \& Freeman 2009

M33
Cioni 2009

NGC 4625

comparison with photoionization models indicate possible solution:

- stochastic variations in the upper IMF and
- aging of HII region population

Abundance gradient breaks in spiral galaxies: NGC 3359

Zahid \& Bresolin 201I, submitted

FOCAS
combine imaging spectrophotometry of Martin \& Roy (I995) with our MOS spectroscopy

FMOS spectroscopy of obscured AGNs

Ezequiel Treister

Identification and redshift measurement of heavily obscured AGN candidates selected in the IR

Expected $\mathrm{z}=\mathrm{I}$ to 3

3-hour exposure CDFS

Atlas of Ly α emitters at $\mathbf{z = 5 . 7 , 6 . 5}$

Hu, Cowie, Barger et al. 2010, ApJ, 725, 394 (Dec 10, 2010)

Narrow-band imaging

$$
\begin{gathered}
\quad \text { (NB8I6, NB912, NB92I) } \\
\lambda_{c}=8150 \AA, 9140 \AA \\
\text { (gaps in sky emission) } \\
+ \\
\text { BVRIz continuum } \\
\text { imaging }
\end{gathered}
$$

Spectroscopic followup at Keck/ DEIMOS

SuprimeCam

spectroscopically confirmed emitters (green), 40 arcsec wide blue=R, green=F816, red=z

Largest sample of confirmed high-z galaxies:
$88 \mathrm{z}=5.7$
$30 \mathrm{z}=6.5$

line profiles are very similar for many of the galaxies
composite spectra are almost identical for $\mathrm{z}=5.7$ and $\mathrm{z}=6.5$
lines are narrower at higher \mathbf{z}
lines are broader at large luminosity

HII galaxies as standard candles

Chavez, Bresolin, Terlevich \& Terlevich

turbulent velocity and ionizing luminosity increase with mass
$\mathrm{L}(\mathrm{H} \beta) \propto$ line width σ^{x}
(Terlevich \& Melnick 198I)

80 HII galaxies from SDSS at $\mathrm{z}=0.01-0.2$

spectra: Subaru HDS, VLT UVES

images: San Pedro
Martir, Cananea
turbulent velocity and ionizing luminosity increase with mass
$\mathrm{L}(\mathrm{H} \beta) \propto$ line width σ^{x} (Terlevich \& Melnick I98I)

80 HII galaxies from SDSS at $z=0.01-0.2$
spectra: Subaru HDS, VLT UVES

images: San Pedro
Martir, Cananea

