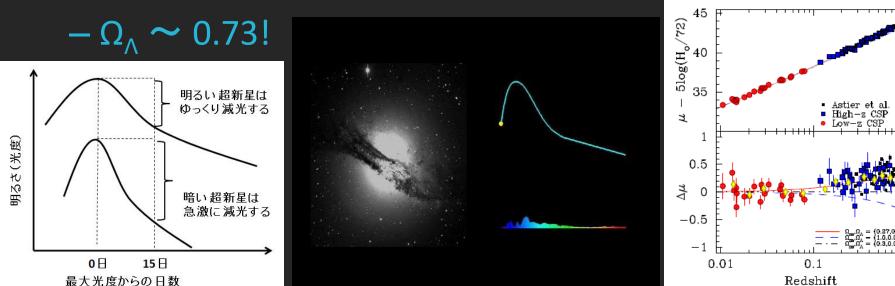
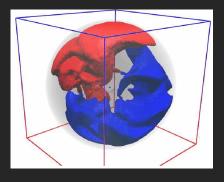


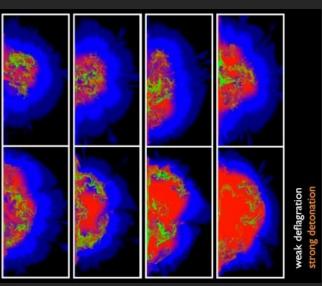
Supernova Explosion Mechanism probed by late-time NIR spectroscopy with AO


Keiichi Maeda (IPMU) Kentaro Motohara (Inst. Astron.) Masaomi Tanaka (IPMU) Ken'ichi Nomoto (IPMU)

- ~ 3 5 SN Ia NIR late-time spectra per year.
 Preferentially with optical spectra.
- This will hopefully provide insights into,
 - Explosion mechanism.
 - Fuel to astrophysics.
 - Standard-candle-natures of SNe Ia.
 - Fuel to cosmology.

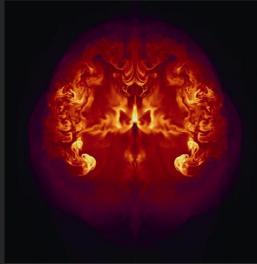
Type la Supernovae


- Thermonuclear runaway of a white-dwarf (WD).
 - An explosion of a Chandrasekhar-mass WD.
 - No central remnant left.
- "Homogeneous" light curves→standard candles.
 Light curve time scale∝Luminosity.

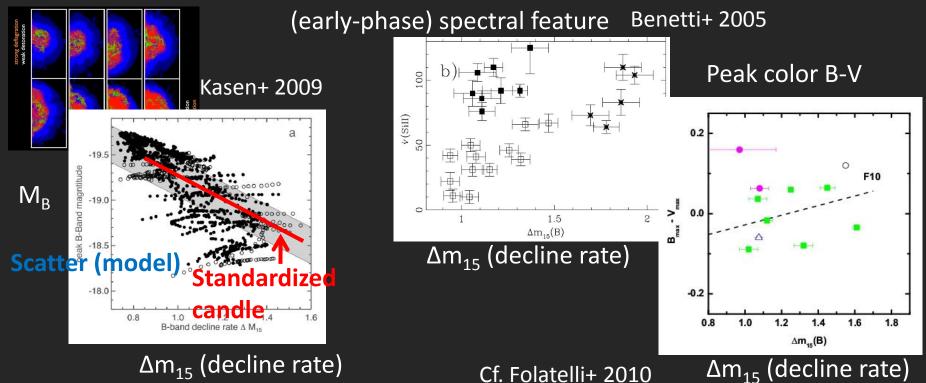

Explosion Geometry is A Key

- The ignition process **yet to be clarified.**
 - The geometry → How the ignition takes place.

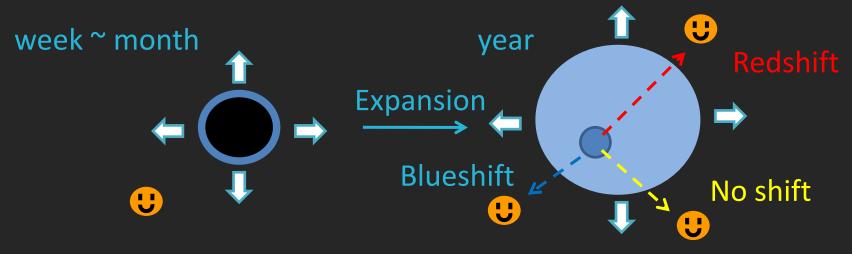
Bulk (off-set) asymmetry in the ignition?



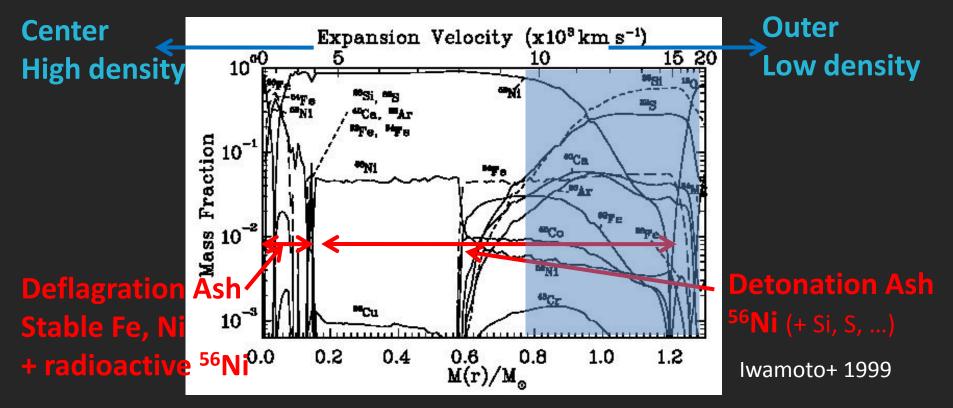
Convection within WD Kuhlen+ 2006 Kasen+ 2009


+ hydro mixing? KM. Roepke. Fink+, 2010

KM, Roepke, Fink+, 2010, ApJ, 712, 624


Explosion Geometry is A Key

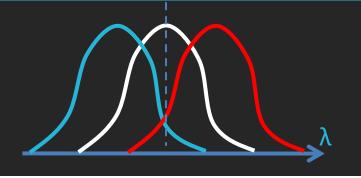
Issues remain for their natures as standard candles.
 Especially, diversities do exist.


How? Late-time spectra

 Just simple... Doppler shift diagnostic of homologously expanding & transparent ejecta.

- Successful for core-collapse SNe to show the asymmetric and (likely) bipolar nature.
 - KM, Kawabata, Mazzali+, 2008, Science, 319, 1220.
 - Modjaz+08, Taubenberger+09.

- Standard explosion scenario:
 - "Deflagration-to-Detonation Transition"
 - (but pure-deflagration models can give something similar.)



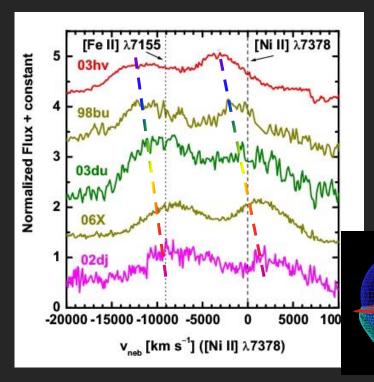
Def. Ash

Stable Ni, Fe low lonization High density low temperature Det. Ash ⁵⁶Ni (→γ-ray) low density high lonization high temperature

Wavelength (μ m)	Ion	Term	$E_{\rm u} ({\rm cm}^{-1})^{\rm b}$	Shift ^c	Region ^d
0.4658	Fem	${}^{5}D_{4}-{}^{3}_{2}F_{4}$	21462.2	No	LD
0.4701	Fe III	${}^{5}D_{3}-{}^{3}_{2}F_{3}$	21699.9	No	LD "Det."
0.4734	Fem	${}^{5}D_{2}-{}^{3}_{2}F_{2}$	21857.2	No	LD Det.
0.5262	Feп	a ⁴ F _{7/2} -a ⁴ H _{11/2}	21430.4	No	LD
0.7155	Fe II	a ⁴ F _{9/2} -a ² G _{9/2}	15844.7	Yes	HD
0.7378	NiII	$^{2}D_{5/2}-^{2}F_{7/2}$	13550.4	Yes	ECAP
0.8617	Fe II	a ⁴ F _{9/2} -a ⁴ P _{5/2}	13474.4	Yes	HD "Def."
1.257	Fe II	$a^6D_{9/2}-a^4D_{7/2}$	7955.3	Yes	HD
1.644	Fen	a4F9/2-a4D7/2	7955.3	Yes	HD

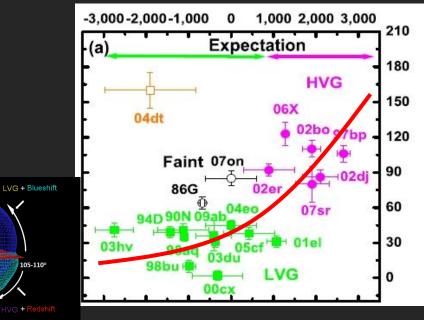
KM, Taubenberger, Sollerman+ 2010

Wavelength (μ m)	Ion	Term	$E_{\rm u} ({\rm cm}^{-1})^{\rm b}$	Shift ^c	Region ^d
0.4658	Fe III	${}^{5}D_{4}-{}^{3}_{2}F_{4}$	21462.2	No	LD
0.4701	Fe III	${}^{5}D_{3}-{}^{3}_{2}F_{3}$	21699.9	No	LD "Det."
0.4734	Fem	${}^{5}D_{2}-{}^{3}_{2}F_{2}$	21857.2	No	LD Det.
0.5262	Fe II	$a^4F_{7/2}-a^4H_{11/2}$	21430.4	No	LD
0.7155	Fe II	a ⁴ F _{9/2} -a ² G _{9/2}	15844.7	Yes	HD
0.7378	Niп	$^{2}D_{5/2}-^{2}F_{7/2}$	13550.4	Yes	ECAP
0.8617	Fеп	a ⁴ F _{9/2} -a ⁴ P _{5/2}	13474.4	Yes	HD "Def."
1.257	Fe II	$a^6D_{9/2} - a^4D_{7/2}$	7955.3	Yes	HD
1.644	Feп	a4F9/2-a4D7/2	7955.3	Yes	HD


Probing "Asymmetric Ignition"

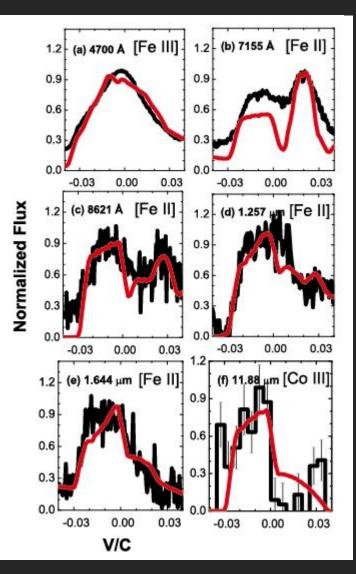
Optical Diagnostics – Bulk asymmetry

• ~ 20 SNe with published late-time spectra.


"Off-set" in the def. ash.

KM, Taubenberger, Sollerman+ 2010, ApJ, 708, 1703

"Viewing angle" as the origin of (early-phase) spectral diversity. KM, Benetti, Stritzinger+ 2010, Nature, 466, 82


Speed of spectral evolution in early phases

Velocity shift \rightarrow Viewing angle

 λ (in Velocity)

SN 2003hv – from optical through NIR

 The only example for which the "asymmetry" has been tested w/ NIR and Mid-IR emission lines.

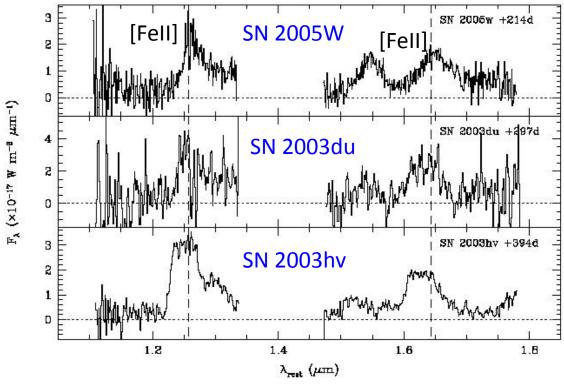
- Emission lines from the "deflagration ash" all show "blueshift".
- Emission lines from the "detonation ash" show

"no-shift". KM, Taubenberger, Sollerman+ 2010 Data from Gerardy+ 05, Motohara+ 06, Leloudas+ 09

Stable Fe, Ni No heating (no emission)

		. –	\sim	
56 B		⇒ 5	Ь Г	
201	\ -	\rightarrow	\sim –	$\mathbf{\rho}$

Wavelength (μ m)	Ion	Term	$E_{\rm u} ({\rm cm}^{-1})^{\rm b}$	Shift ^c	Region ^d
0.4658	Fem	${}^{5}D_{4}-{}^{3}_{2}F_{4}$	21462.2	No	LD
0.4701	Fe III	${}^{5}D_{3}-{}^{3}_{2}F_{3}$	21699.9	No	LD
0.4734	Fe III	${}^{5}D_{2}-{}^{3}_{2}F_{2}$	21857.2	No	LD
0.5262	Fen	$a^4F_{7/2}-a^4H_{11/2}$	21430.4	No	LD
0.7155	Fe II	a ⁴ F _{9/2} -a ² G _{9/2}	15844.7	Yes	HD
0.7378	Niп	$^{2}D_{5/2}-^{2}F_{7/2}$	13550.4	Yes	ECAP
0.8617	Feп	a ⁴ F _{9/2} -a ⁴ P _{5/2}	13474.4	Yes	HD
1.257	Feп	a ⁶ D _{9/2} -a ⁴ D _{7/2}	7955.3	Yes	HD
1.644	Fen	a4F9/2-a4D7/2	7955.3	Yes	HD

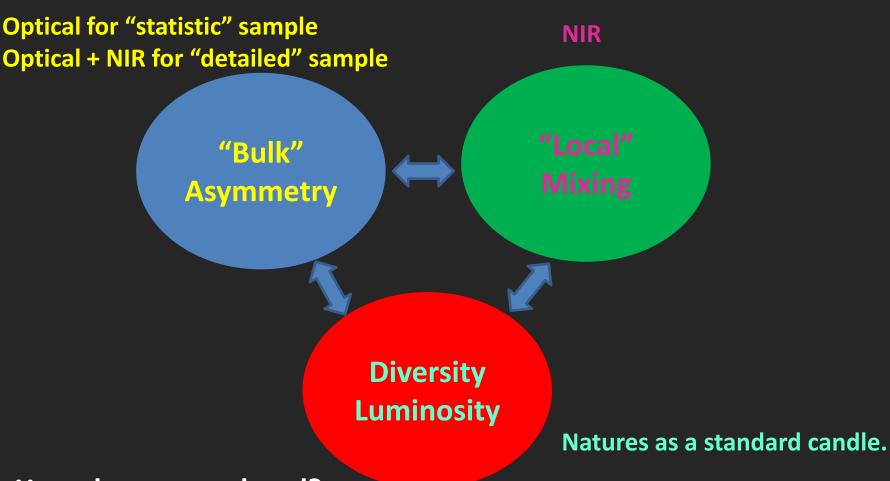

≯

λ

Clean to do this test

NIR Diagnostics – Details on mixing

~ 5 SNe with published late-time spectra.
 – 3 by Subaru/CISCO/OHS.


Peaked

Intermediate

Different Boxy degree of the mixing? ←Initial ignition.

Motohara, KM, Gerardy+ 2006, ApJ, 652, L101; Hoflich+ 04

Synergy

How these are related?

- Is the luminosity dependent on the "bulk" asymmetry and/or the "local" mixing?

- Which diversities explained by which.

How many SNe do we expect?

- IRCS, S/N ~ 5 for 4-5 hrs (spectroscopy)
 - @ 0.2" w/ AO, H ~ 20 21.
- SNe become faint at later epochs: @ 150 days.
 - SNe w/ peak mag < 16 would be H ~ 21.</p>
 - ~ 10 15 SNe @ 1 semester.
- Out of ~ 10 15 SNe:
 - ~ 1/2 would satisfy the LGS condition.
 - ~ 1/3 would satisfy the (RA, dec) condition.
- Expectation = 1 3 SNe per semester W/ AO.

A Possible Strategy

- A problem in scheduling for normal mode.

 Our targets (~ 150 days after the discovery) will be discovered after the usual deadline!
- ToO?
 - Not a usual ToO... Most of our targets will be decided before the semester is started!
- Also we want the synergy with the **optical** spectroscopy (in normal mode).
- Suggestion welcome.

Conclusions

- Explosion geometry of SNe Ia is becoming important field just recently.
 - Direct test for the explosion physics.
 - Application to cosmology. Origin of Diversities?
- W/AO, NIR can probe up to 5 SNe in a year.
 Mixing process of the very beginning of the explosion.
 w/ optical, bulk asymmetry can also be derived.
 - Potentially improve our understanding of SNe Ia as standard candles.
 - A way to **better luminosity (distance) calibration?**