Galaxy Formation from simulation side

Takashi Okamoło

 （Hokkaido University）
Milky Way－mass galaxies

－Why Milky Way－mass galaxies？
－dominate the stellar mass density of the local Universe
－at the knee of the luminosity／mass function
－Highest efficiency to convert baryons into stars

Feedback is matter

－Most of simulations convert too many barons into stars．
－Need stronger feedback

Feedback in simulations

－Feedback is modelled as＂subgrid physics＂
－Individual SN remnants cannot be resolved
－Simply put feedback energy into star－forming regions as thermal energy has little or no effect
－Putting feedback energy as kinetic form do not have strong impact either because kinetic energy immediately thermalizes in the dens gas．

Stronger feedback

－Thermal feedback＋delayed cooling
－e．g．Tacker \＆Couchman＇01，Stinson＋＇06
－Shutting off cooling of heated gas for a while（～ 10 Myr）
－Forms realistic disk galaxies（e．g．Guedes＋＇II）
－Kinetic feedback（winds）＋decoupling
－e．g．Springel \＆Hernquist＇03，Oppenheimer \＆Dave＇06， Okamoto＋＇l0
－Give the momentum to wind particles and they are decoupled from hydrodynamic interactions until they leave star－forming regions．
－Successes in reproducing many properties of galaxies （e．g．Okamoto＋＇IO，Okamoto＇ 13 ，Vogelsberger＋＇।3）

Feedback efficiency is rather unclear

Subgird makes difference

－Aquila comparison project （Scannapieco，Okamoto＋＇l2）
－Cosmological simulations from the identical initial condition with favorite codes and models．
－MW－mass halo with a quiet merger history
－Codes：SPH，AMR，and moving mesh

Results

－Projected stellar density
－Wide range of morphology from the same initial condition．．．

Stellar mass and morphology

（Scannapieco＋＇I2）

Stellar mass and morphology

（Scannapieco＋＇I2）

Evolution of Milky Way－ mass galaxies by high－resolution cosmological simulations

The simulations

－Two Milky Way－sized halos from the Aquarius simulation（Springel＋＇08）in a comoving $100 \mathrm{~h}^{-1}$ Mpc box
－Labelled as Aq－C and Aq－D
（Aq－C is the halo used in the Aquila project）
－The same physics used in the Aquila
－Higher resolution
－How does bulge－disk system develop？

$\mathrm{Aq}-\mathrm{C}$

－no significant mergers below redshift 4
－disc formation begins around redshift 2
－there is a bar below redshift 1
－The orientation of the disc changes with redshift

Aq^{-C}

－no significant mergers below redshift 4
－disc formation begins around redshift 2
－there is a bar below redshift 1
－The orientation of the disc changes with redshift

Aq－D

－no significant mergers below redshift 4
－disc formation begins around redshift 2
－can＇t see bar－like structure
－clumpy star formation below redshift 1

$A q-D$

－no significant mergers below redshift 4
－disc formation begins around redshift 2
－can＇t see bar－like structure
－clumpy star formation below redshift 1

Surface density profiles

－Fit the bulge by the Sérsic profile：$\Sigma(r)=\Sigma_{e} \exp \left[-b_{n}\left\{\left(\frac{r}{R_{e}}\right)^{\frac{1}{n}}-1.0\right\}\right]$
－Aq－C： $\mathrm{n}=1.2$
－Aq－D： $\mathrm{n}=1.4$

pseudobulge－like

（Okamoto＇10）

Bulge shapes

－A bar in Aq－C
－Both bulges have disky contour shapes in edge－ on
－Weak signature of boxy－bulge in Aq－C
－Diamond shape of Aq－ D＇s bulge is a strong evidence of disky bulges

Both bulges are pseudo－bulges
（Okamoto’10）

Kinematic properties of bulges

Evolution of surface density profiles

－By $z=2-3$ ，the bulges have formed as disks with small scale length．
－From $z \sim 2$ ，the main disks with large scale length form around the disky bulges．
－The bulge masses at $z=2$ account for $70 \%(A q-C)$ and $87 \%(A q-D)$ of those at $z=0$ ．

> The main process of the pseudo-bulge formation is NOT the secular evolution in these simulations

Star formation histories of the bulges

－Formation histories of stars with in 3 kpc at z $=0$
－Bulge stars are mainly formed by high－ redshift starbursts
－Mostly in situ．

Formation time－scale of the bulges

Fishert＇09

－blue filled circles：pseudo－ bulges
－cyan filled circles：pseudo－ bulges in late－type disks
－blue open circles：inactive pseudo－bulges
－red open squares：classical bulges
Simulated bulges are inactive pseudo－bulges
（Okamoto＇10）

Summary of the simulation results

－No agreed model of feedback
－（Inactive）pseudo－bulges form in MW－mass galaxies with non－secular process（high－ redshift starbursts）
－A similar result is reported by an independent study（Guedes＋’12）
－Observed counterparts do exist．But are they typical？

Observational indications

－The stellar surface density evolution of the ＂progenitors＂of the MW－mass galaxies
－the central and outer parts built up at the same rate between $z=2.5$ and 1 ．

In simulations

－The bulge masses at $z=2$ account for 70%（Aq－C） and $87 \%(A q-D)$ of those at $z=0$ ．
－Early bulge formation and inside－out galaxy formation

Non inside－out formation of observed galaxies

－Need to suppress the starbursts that build up bulges at early times in simulations
－Early stellar feedback？（feedback by radiation and stellar winds，e．g．Stinson＋＇12）：SN feedback is too late
－Need to bring high angular momentum material to the center
－Secular processes such as bars and clump migration
－High－resolution imaging of high－redshift progenitors with kinematic information is a key to understand the physical processes．

Non inside－ou† formation of observed galaxies

－Neend to sunnress the starbursts that huild un

－High－resolution imaging of high－redshift progenitors with kinematic information is a key to understand the physical processes．

Non inside－out formation of observed galaxies

－Need to suppress the starbursts that build up bulges at early times in simulations
－Early stellar feedback？（feedback by radiation and stellar winds，e．g．Stinson＋＇12）：SN feedback is too late
－Need to bring high angular momentum material to the center
－Secular processes such as bars and clump migration
－High－resolution imaging of high－redshift progenitors with kinematic information is a key to understand the physical processes．

Answers to the questions

THE ANSWER to the questions

I＇d rather buy a supercomputer．

Q． 1

－Which instrument is essentially important for your science cases？
I．Wide－Field Near－IR Imager
2．Wide－Field NIR Imager and Multi－Object Spectrograph
3．Multi－Object Integral Field Spectrograph

Q． 1

－Which instrument is essentially important for your science cases？
I．Wide－Field Near－IR Imager
2．Wide－Field NIR Imager and Multi－Object Spectrograph
3．Multi－Object Integral Field Spectrograph
－Ans．
Option 3，of course．I＇d like to have kinematic information． Option 2 might be OK（c．f．Tadaki－san＇s talk）

Q． 2

－What is the optimal plate scale／FoV for your science cases？

Q． 2

－What is the optimal plate scale／FoV for your science cases？
－Ans．
The baseline specification seems reasonable．

Q． 3

－Can you highlight synergies between this instrument and the TMT？

Q． 3

－Can you highlight synergies between this instrument and the TMT？
－Ans．
No，I can＇t．

Q． 3

－Can you highlight synergies between this instrument and the TMT？
－Ans．
No，I can＇t．
To find interesting high－z objects．

Q． 4

－Does this instrument have competitive（or complementary）capabilities with planned Near－IR space missions such as JWST，Euclid and WISH？

Q． 4

－Does this instrument have competitive（or complementary）capabilities with planned Near－IR space missions such as JWST，Euclid and WISH？
－Ans．
To be honest．．．It doesn＇t look like so．too late．
But space missions are expensive，often delay，and launch operations sometimes fail．．．
Maybe NB imaging and emission lines according to Minowa－san＇s and Akiyama－san＇s talks．

Done！

